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 Understanding the difference between the Gauss-Seidel and 

Jacobi methods.

 Knowing how to assess diagonal dominance 

and knowing what it means.

 Recognizing how relaxation can be used 

to improve convergence of iterative methods.

 Understanding how to solve systems of nonlinear equations 

with successive substitution and Newton-Raphson. 
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 The Gauss-Seidel method is the most commonly used 

iterative method for solving linear algebraic equations [A]{x}={b}.

 For a 3x3 system with nonzero elements along the diagonal, 

for example, the jth iteration values are found from the j-1th

iteration using:
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 The Jacobi iteration is similar to the Gauss-Seidel method, 

except the j-1th information is used to update all variables in the jth

iteration:

a) Gauss-Seidel

b) Jacobi
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 The convergence of an iterative method can be calculated by 

determining the relative percent change of each element in {x}.  

For example, for the ith element in the jth iteration, 

 The method is ended when all elements have converged to a set 

tolerance. 

a,i 
xi
j  xi

j1

xi
j

100%
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Q. Use the Gauss-Seidel Method to solve this set of 

equations.
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 The Gauss-Seidel method may diverge, 

but if the system is diagonally dominant, 

it will definitely converge.

 Diagonal dominance means:

 Many engineering problems satisfy this requirement



aii  aij
j1
ji

n





School of Mechanical Engineering

Chung-Ang University
Numerical Methods 

MATLAB Program

10

new

2

33

32new

1

33

31

33

3new

3

old

3

22

23new

1

22

21

22

2new

2

old

3

11

13old

2

11

12

11

1new

1

x
a

a
x

a

a

a

b
x

x
a

a
x

a

a

a

b
x

x
a

a
x

a

a

a

b
x







MATLAB M-file: Gauss-Seidel

}]{[}{}{ xCdx 



















333

222

111

/

/

/

}{

ab

ab

ab

d



















0//

/0/

//0

][

33323331

22232221

11131112

aaaa

aaaa

aaaa

C



School of Mechanical Engineering

Chung-Ang University
Numerical Methods 11



School of Mechanical Engineering

Chung-Ang University
Numerical Methods 

Relaxation

12

 To enhance convergence, an iterative program can 
introduce relaxation where the value at a particular iteration 
is made up of a combination of the old value and the newly 
calculated value (update for the new one):

where λ is a weighting factor that is assigned a value 
between 0 and 2.

 0< λ <1: underrelaxation

 λ =1: no relaxation

 1< λ ≤2: overrelaxation



xi
new xi

new  1 xi
old
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Nonlinear systems can also be solved using 
the same strategy as the Gauss-Seidel 
method - solve each system for one of the 
unknowns and update each unknown using 
information from the previous iteration.

This is called successive substitution.
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Q. Use successive substitution to determine the roots of

the following equation. A correct pair of roots is 

x1 = 2 and x2 = 3. 

Use the initial guesses of x1 = 1.5 and x2 = 3.5.
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Use the same equation but with a different format

211 10 xxx 
1

2
2

3

57

x

x
x




First iteration

Second iteration

17945.2)5.3(5.1101 x 86051.2
)17945.2(3

5.357
2 


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94053.1)86051.2(17945.2101 x
04955.3

)94053.1(3

86051.257
2 


x

The approach is converging on the true values.

 The most serious shortcoming of substitution, which depends on the 

manner in which the equations are formulated.
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Newton-Raphson
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 Nonlinear systems may also be solved using the Newton-
Raphson method for multiple variables.

 For a one-variable system, the Taylor series approximation 
and resulting Newton-Raphson equations are:

 For a two-variable system, 
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Q. Use the Newton-Raphson method to determine the

roots of the equations. 

Use the initial guesses of x1 =1.5 and x2 = 3.5.
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5.210)5.3(5.1)5.1( 2
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The values of the functions can be evaluated at the initial guesses as

These values can be substituted to give
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x

The computation can be repeated until an acceptable accuracy

is obtained.
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