
School of Mechanical Engineering

Chung-Ang University
Numerical Methods 2010-2

LU Factorization

Part 3

Chapter 10

1



School of Mechanical Engineering

Chung-Ang University
Numerical Methods 2010-2

Chapter Objectives

2

 Understanding that LU factorization involves decomposing the 

coefficient matrix into two triangular matrices that can then be 

used to efficiently evaluate different right-hand-side vectors.

 Knowing how to express Gauss elimination as an LU 

factorization.

 Given an LU factorization, knowing how to evaluate multiple 

right-hand-side vectors.

 Recognizing that Cholesky’s method provides an efficient way 

to decompose a symmetric matrix and that the resulting 

triangular matrix and its transpose can be used to evaluate 

right-hand-side vectors efficiently.

 Understanding in general terms what happens when 

MATLAB’s backslash operator is used to solve linear systems. 
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 Recall that the forward-elimination step of Gauss 

elimination comprises the bulk of the computational 

effort.

 LU factorization methods separate the time-consuming 

elimination of the matrix [A] from the manipulations of 

the right-hand-side [b].

 Once [A] has been factored (or decomposed), multiple 

right-hand-side vectors can be evaluated in an efficient 

manner. 
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 LU factorization involves two 

steps:

 Factorization to decompose 

the [A] matrix into a product 

of a lower triangular matrix [L] 

and an upper triangular 

matrix [U].  [L] has 1 for each 

entry on the diagonal.

 Substitution to solve for {x}

 Gauss elimination can be 

implemented using LU 

factorization 
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 To solve [A]{x}={b}, first decompose [A] to get [L][U]{x}={b}

 Set up and solve [L]{d}={b}, where {d} can be found using 

forward substitution.

 Set up and solve [U]{x}={d}, where {x} can be found using 

backward substitution.

 In MATLAB:

[L, U] = lu(A)

d = L\b

x = U\d
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[MATLAB built in function]
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 [A]{x}={b} can be rewritten as [L][U]{x}={b} using LU 

factorization.

 The LU factorization algorithm requires the same total flops 

as for Gauss elimination.

 The main advantage is once [A] is decomposed, 

the same [L] and [U] can be used for multiple {b} vectors.

 MATLAB’s lu function can be used to generate 

the [L] and [U] matrices:

[L, U] = lu(A)
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 Q. To use LU decomposition to solve this problem
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 Symmetric systems occur commonly in both mathematical 

and engineering/science problem contexts, and there are 

special solution techniques available for such systems.

 The Cholesky factorization is one of the most popular of 

these techniques, and is based on the fact that a 

symmetric matrix can be decomposed as [A]= [U]T[U], 

where T stands for transpose.

 The rest of the process is similar to LU decomposition and 

Gauss elimination, except only one matrix, [U], needs to be 

stored.
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 MATLAB can perform a Cholesky factorization with the 

built-in chol command:

U = chol(A)

 MATLAB’s left division operator \ examines the system to 

see which method will most efficiently solve the problem.  

This includes trying banded solvers, back and forward 

substitutions, Cholesky factorization for symmetric systems.  

If these do not work and the system is square, Gauss 

elimination with partial pivoting is used.


