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 Understanding the application of high-accuracy numerical 

differentiation formulas for equispaced data.

 Knowing how to evaluate derivatives for unequally spaced data.

 Understanding how Richardson extrapolation is applied for 

numerical differentiation.

 Recognizing the sensitivity of numerical differentiation to data 

error.

 Knowing how to evaluate derivatives in MATLAB with the diff and 

gradient functions.

 Knowing how to generate contour plots and vector fields with 

MATLAB. 
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The one dimensional forms of some constitutive laws commonly used

Law Equation
Physical 

Area
Gradient Flux
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Fourier’s 

law
Heat conduction Temperature Heat

Thermal

conductivity

Fick’s

law
Mass diffusion Concentration Mass Diffusivity
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Flow through

porous media
Head Flow
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law
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conductivity
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viscosity 

law
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 The mathematical definition of a derivative begins with a 

difference approximation:

and as Δx is allowed to approach zero, the difference 

becomes a derivative:



y

x


f xi x  f xi 
x



dy

dx
 lim

x0

f xi x  f xi 
x
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 Taylor series expansion can be used to 

generate high-accuracy formulas for 

derivatives by using linear algebra to 

combine the expansion around several 

points.

 Three categories for the formula include 

forward finite-difference, backward finite-

difference, and centered finite-difference. 
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 There are forward difference, backward difference and centered 

difference approximations, depending on the points used:

 Forward:

 Backward:

 Centered:



f '(xi) 
f (xi1) f (xi)

h
O(h)



f '(xi) 
f (xi) f (xi1)

h
O(h)



f '(xi) 
f (xi1) f (xi1)

2h
O(h2)
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High Accuracy Differentiation
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 Forward Taylor series expansion 

21( ) ( ) ( )
( ) ( )

2!

i i i
i

f x f x f x
f x h O h

h




   

 Forward-difference approximation of 1st derivative excluding the 

second and higher derivative term (In chapter 4) 

1( ) ( )
( ) ( )i i
i

f x f x
f x O h

h

 
  

 Forward-difference approximation of 2nd derivative

2 1

2

( ) 2 ( ) ( )
( ) ( )i i i
i

f x f x f x
f x O h

h

  
  
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 Forward-difference approximation of 1st derivative including 

2nd derivative term

21 2 1

2

( ) ( ) ( ) 2 ( ) ( )
( ) ( )

2

i i i i i
i

f x f x f x f x f x
f x h O h

h h

    
   

22 1( ) 4 ( ) 3 ( )
( ) ( )

2

i i i
i

f x f x f x
f x O h

h

   
  

Notice that inclusion of second-derivative term has 

improved the accuracy to O(h2) . 
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Example 19.1 (1/2)
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Q. Recall that at in Ex. 4.4 we estimated the derivative of f(x) at 

x=0.5 using forward differences and a step size of h=0.25. The 

results are summarized in the table below. The exact value of 

f’(0.5)= -0.9125.

4 3 2( ) 0.1 0.15 0.5 0.25 1.2f x x x x x     

Backward O(h) Centered O(h2) Forward O(h)

Estimate -0.714 -0.934 -1.155

t
21.7% -2.4% -26.5%

Repeat the computation with high accuracy formulas.
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Sol) 2 2

1 1

1 1

2 2

0                ( ) 1.2

0.25           ( ) 1.1035156

0.5               ( ) 0.925

0.75           ( ) 0.6363281

1                ( ) 0.2

i i

i i

i i

i i

i i

x f x

x f x

x f x

x f x

x f x

 

 

 

 

 

 

 

 

 

Forward difference of O(h2) is computed as

t

0.2 4(0.6363281) 3(0.925)
(0.5) 0.859375             =5.82 %

2(0.25)
f 

  
   

Backward difference of O(h2) is computed as

t

3(0.925) 4(1.1035156) 1.2
(0.5) 0.878125             =3.77 %

2(0.25)
f 

 
   

Backward difference of O(h4) is computed as

t

0.2 8(0.6363281) 8(1.1035156) 1.2
(0.5) 0.9125          =0 %

12(0.25)
f 

   
   
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 As with integration, the Richardson extrapolation can be used to combine 
two lower-accuracy estimates of the derivative to produce a higher-
accuracy estimate.

 For the cases where there are two O(h2) estimates and the interval is 
halved (h2=h1/2), an improved O(h4) estimate may be formed using: 

 For the cases where there are two O(h4) estimates and the interval is 
halved (h2=h1/2), an improved O(h6) estimate may be formed using:

 For the cases where there are two O(h6) estimates and the interval is 
halved (h2=h1/2), an improved O(h8) estimate may be formed using:



D 
4

3
D(h2 )

1

3
D(h1)



D 
16

15
D(h2 )

1

15
D(h1)



D 
64

63
D(h2 )

1

63
D(h1)



School of Mechanical Engineering

Chung-Ang University
Numerical Methods 2010-2

Example 19.2
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Q. Using the same function as in Ex.19.1, estimate the first 

derivative at x=0.5 for a step size of h1=0.5, and h2=0.25. Use 

the Richardson extrapolation to compute improved estimate. 

The exact solution is -0.9125.
4 3 2( ) 0.1 0.15 0.5 0.25 1.2f x x x x x     

Sol.) The first derivative with centered difference 2 2

1 1

1 1

2 2

0                ( ) 1.2

0.25           ( ) 1.1035156

0.5               ( ) 0.925

0.75           ( ) 0.6363281

1                ( ) 0.2

i i

i i

i i

i i

i i

x f x

x f x

x f x

x f x

x f x

 

 

 

 

 

 

 

 

 

t

t

0.2 1.2
(0.5) 1.0         = 9.6%

1

0.6363281 1.103516
(0.25) 0.934375  = 2.4%

0.5

D

D






   


   

Using the Richardson extrapolation, the improved Estimate is

4 1
( 0.934375) ( 1) 0.9125         

3 3
D      
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Unequally Spaced Data
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• One way to calculated derivatives of unequally 

spaced data is to determine a polynomial fit and 

take its derivative at a point.

• As an example, using a second-order Lagrange 

polynomial to fit three points and taking its 

derivative yields:



f x  f x0 
2x x1  x2

x0  x1  x0  x2 
 f x1 

2x x0  x2

x1  x0  x1  x2 
 f x2 

2x x0  x1

x2  x0  x2  x1 
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Example 19.3
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A temperature is measured inside the soil as shown below. 

Compute the heat flux into the ground at the air-soil interface.

0

( 0)
z

dT
q z k

dz 

  

where q(x)=heat flux (W/m2), 

k=thermal conductivity for soil (=0.5 W/(m·K),

T=Temperature(K), 

z=distance measured from the surface 

into the soil.

 
     

  

2(0) 0.0125 0.0375 2(0) 0 0.0375
0 13.5 12

0 0.0125 0 0.0375 0.0125 0 0.0125 0.0375

2(0) 0 0.0125
10  1440 1440 133.333 133.333  /

0.0375 0 0.0375 0.0125

f

K m

   
  

   

 
      

 

2
( 0) 0.5 133.333 66.667

 

W W W
q z

m K m m

 
     

 
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Derivatives and Integrals for 
Data with Errors
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• A shortcoming of numerical differentiation is that it tends to 

amplify errors in data, whereas integration tends to smooth data 

errors.

• One approach for taking derivatives of data with errors is to fit a 

smooth, differentiable function to the data and take the derivative 

of the function.

(a) Data with no error

(b) Resulting numerical

differentiation of curve (a)

(c) Data modified slightly

(d) Resulting numerical

differentiation of curve (a)

 Small data errors are amplified

by numerical differentiation.
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Numerical Differentiation with MATLAB
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• MATLAB has two built-in functions to help take derivatives, diff 

and gradient:

• diff(x)

– Returns the difference between adjacent elements in x

>> f = @(x) 0.2+25*x-200*x.^2+675*x.^3-900*x.^4+400*x.^5;
>> x = 0 : 0.1 : 0.8 ;
>> y = f(x) ;

>> diff(x)
ans =

Columns 1 through 5
0.1000    0.1000   0.1000   0.1000   0.1000

Columns 6 through 8
0.1000   0.1000   0.1000
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Numerical Differentiation with MATLAB
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• diff(y)./diff(x)

– Returns the difference between adjacent values in y divided 

by the corresponding difference in adjacent values of x

>> d=diff(y)./diff(x) 
Columns 1 through 5

10.8900     -0.0100      3.1900   8.4900   8.6900
Columns 6 through 8

1.3900   -11.0100  -21.3100

>> n=length(x);
>> xm=(x(1:n-1)+x(2:n))./2; 

% vector d contains derivative estimates corresponding to the 
% midpoint between adjacent elements

>> xa=0:  .01 : .8 ;
>> ya=25-400*xa+3*675*xa.^2-4*900*xa.^3+5*400*xa.^4;
>> xplot(xm, d, 'o', xa, ya)
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Numerical Differentiation with MATLAB
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• fx = gradient(f, h)
Determines the derivative of the data in f at each of the points.  
The program uses forward difference for the first point, backward 
difference for the last point, and centered difference for the 
interior points.  h is the spacing between points; if omitted h=1.

• The major advantage of gradient over diff is gradient’s result is 
the same size as the original data.

• Gradient can also be used to find partial derivatives for matrices:
[fx, fy] = gradient(f, h)

>> dy=gradient(y, 0.1)
dy =

Columns 1 through 5
10.8900       5.4400      1.5900       5.8400     8.5900

Columns 6 through 8
5.0400    -4.8100   -16.1600   -21.3100
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>> xa=0:  .01 : .8 ;
>> ya=25-400*xa+3*675*xa.^2-4*900*xa.^3+5*400*xa.^4;
>> xplot(x, dy, 'o', xa, ya)


