# Part 5 Chapter 19

## **Numerical Differentiation**



# **Chapter Objectives**

- Understanding the application of <u>high-accuracy numerical</u> <u>differentiation formulas</u> for <u>equispaced data</u>.
- Knowing how to evaluate derivatives for <u>unequally spaced data</u>.
- Understanding how <u>Richardson extrapolation is applied for</u> <u>numerical differentiation</u>.
- Recognizing the <u>sensitivity of numerical differentiation to data</u> <u>error.</u>
- Knowing how to evaluate derivatives in MATLAB with the diff and gradient functions.
- Knowing how to generate contour plots and vector fields with MATLAB.



## **Introduction to Differentiation**

The one dimensional forms of some constitutive laws commonly used

| Law                          | Equation                        | Physical<br>Area          | Gradient      | Flux            | Proportional constat    |
|------------------------------|---------------------------------|---------------------------|---------------|-----------------|-------------------------|
| Fourier's<br>law             | $q = -k \frac{dT}{dx}$          | Heat conduction           | Temperature   | Heat            | Thermal conductivity    |
| Fick's<br>Iaw                | $J = -D\frac{dc}{dx}$           | Mass diffusion            | Concentration | Mass            | Diffusivity             |
| D'Arcy'<br>law               | $q = -k\frac{dh}{dx}$           | Flow through porous media | Head          | Flow            | Hydraulic conductivity  |
| Ohm's<br>Iaw                 | $J = -\sigma \frac{dV}{dx}$     | Current flow              | Voltage       | Current         | Electrical conductivity |
| Newton's<br>viscosity<br>law | $\tau = -\mu \frac{du}{dx}$     | Fluids                    | Velocity      | Shear<br>Stress | Dynamic<br>Viscosity    |
| Hooke's<br>Iaw               | $\sigma = E \frac{\Delta L}{L}$ | Elasticity                | Deformation   | Stress          | Young's<br>modulus      |

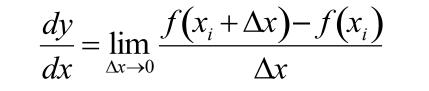
Numerical Methods 2010-2

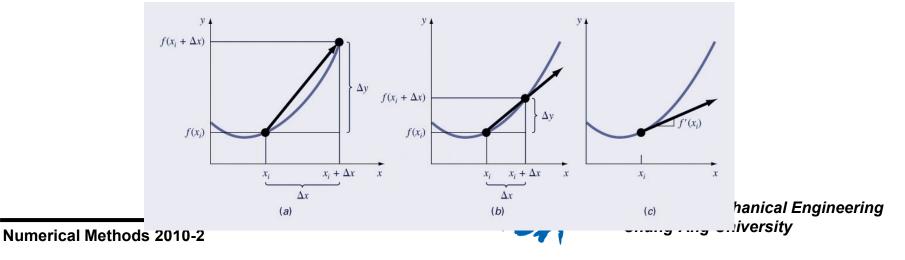
## Differentiation

 The mathematical definition of a derivative begins with a difference approximation:

$$\frac{\Delta y}{\Delta x} = \frac{f(x_i + \Delta x) - f(x_i)}{\Delta x}$$

and as  $\Delta x$  is allowed to approach zero, the difference becomes a derivative:





#### High-Accuracy Differentiation Formulas

- Taylor series expansion can be used to generate <u>high-accuracy formulas for</u> <u>derivatives</u> by using linear algebra to combine the expansion around several points.
- Three categories for the formula include forward finite-difference, backward finitedifference, and centered finite-difference.



#### **Differentiation derived** from Taylor series expansions

- There are forward difference, backward difference and centered difference approximations, depending on the points used:
- Forward:

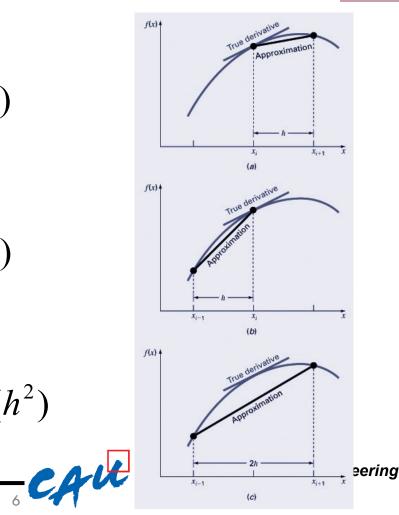
$$f'(x_i) = \frac{f(x_{i+1}) - f(x_i)}{h} + O(h)$$

Backward:

$$f'(x_i) = \frac{f(x_i) - f(x_{i-1})}{h} + O(h)$$

• Centered:

$$f'(x_i) = \frac{f(x_{i+1}) - f(x_{i-1})}{2h} + O(h^2)$$



# **High Accuracy Differentiation**

Forward Taylor series expansion

$$f(x_{i+1}) = f(x_i) + f'(x_i)h + \frac{f''(x_i)}{2!}h^2 + \cdots$$

$$f'(x_i) = \frac{f(x_{i+1}) - f(x_i)}{h} - \frac{f''(x_i)}{2!}h + O(h^2)$$

 Forward-difference approximation of 1st derivative excluding the second and higher derivative term (In chapter 4)

$$f'(x_i) = \frac{f(x_{i+1}) - f(x_i)}{h} + O(h)$$

Forward-difference approximation of 2nd derivative

$$f''(x_i) = \frac{f(x_{i+2}) - 2f(x_{i+1}) + f(x_i)}{h^2} + O(h)$$

Numerical Methods 2010-2

# **High Accuracy Differentiation**

 Forward-difference approximation of 1st derivative including 2nd derivative term

$$f'(x_i) = \frac{f(x_{i+1}) - f(x_i)}{h} - \frac{f(x_{i+2}) - 2f(x_{i+1}) + f(x_i)}{2h^2}h + O(h^2)$$
$$f'(x_i) = \frac{-f(x_{i+2}) + 4f(x_{i+1}) - 3f(x_i)}{2h} + O(h^2)$$

 Notice that inclusion of second-derivative term has improved the accuracy to O(h<sup>2</sup>).

## **Forward Finite-Difference**

First Derivative
 Error

 
$$f'(x_i) = \frac{f(x_{i+1}) - f(x_i)}{h}$$
 $O(h)$ 
 $f'(x_i) = \frac{-f(x_{i+2}) + 4f(x_{i+1}) - 3f(x_i)}{2h}$ 
 $O(h^2)$ 

 Second Derivative
  $O(h)$ 
 $f''(x_i) = \frac{f(x_{i+2}) - 2f(x_{i+1}) + f(x_i)}{h^2}$ 
 $O(h)$ 
 $f''(x_i) = \frac{-f(x_{i+3}) + 4f(x_{i+2}) - 5f(x_{i+1}) + 2f(x_i)}{h^2}$ 
 $O(h)$ 

 Third Derivative
  $O(h)$ 

$$f'''(x_i) = \frac{f(x_{i+3}) - 3f(x_{i+2}) + 3f(x_{i+1}) - f(x_i)}{h^3} \qquad O(h)$$

$$f'''(x_i) = \frac{-3f(x_{i+4}) + 14f(x_{i+3}) - 24f(x_{i+2}) + 18f(x_{i+1}) - 5f(x_i)}{2h^3} \qquad O(h^2)$$

Fourth Derivative

$$f''''(x_i) = \frac{f(x_{i+4}) - 4f(x_{i+3}) + 6f(x_{i+2}) - 4f(x_{i+1}) + f(x_i)}{h^4} \qquad O(h)$$

$$f''''(x_i) = \frac{-2f(x_{i+5}) + 1 f(x_{i+4}) - 24f(x_{i+3}) + 26f(x_{i+2}) - 14f(x_{i+1}) + 3f(x_i)}{h^4} \qquad O(h^2)$$

## **Backward Finite-Difference**

$$\begin{array}{lll} \mbox{First Derivative} & \mbox{Error} \\ f'(x_i) = \frac{f(x_i) - f(x_{i-1})}{h} & O(h) \\ f'(x_i) = \frac{3f(x_i) - 4f(x_{i-1}) + f(x_{i-2})}{2h} & O(h^2) \\ \mbox{Second Derivative} \\ f''(x_i) = \frac{f(x_i) - 2f(x_{i-1}) + f(x_{i-2})}{h^2} & O(h) \\ f''(x_i) = \frac{2f(x_i) - 5f(x_{i-1}) + 4f(x_{i-2}) - f(x_{i-3})}{h^2} & O(h^2) \\ \mbox{Third Derivative} \\ f'''(x_i) = \frac{f(x_i) - 3f(x_{i-1}) + 3f(x_{i-2}) - f(x_{i-3})}{h^3} & O(h) \\ f'''(x_i) = \frac{5f(x_i) - 18f(x_{i-1}) + 24f(x_{i-2}) - 14f(x_{i-3}) + 3f(x_{i-4})}{2h^3} & O(h^2) \\ \mbox{Fourth Derivative} \\ f''''(x_i) = \frac{f(x_i) - 4f(x_{i-1}) + 6f(x_{i-2}) - 4f(x_{i-3}) + f(x_{i-4})}{h^4} & O(h) \\ f''''(x_i) = \frac{3f(x_i) - 14f(x_{i-1}) + 26f(x_{i-2}) - 24f(x_{i-3}) + 11f(x_{i-4}) - 2f(x_{i-5})}{h^4} & O(h) \\ \end{array}$$

#### **Centered Finite-Difference**

First Derivative
 Error

 
$$f'(x_i) = \frac{f(x_{i+1}) - f(x_{i-1})}{2h}$$
 $O(h^2)$ 
 $f'(x_i) = \frac{-f(x_{i+2}) + 8f(x_{i+1}) - 8f(x_{i-1}) + f(x_{i-2})}{12h}$ 
 $O(h^4)$ 

 Second Derivative
  $0(h^2)$ 
 $f''(x_i) = \frac{f(x_{i+1}) - 2f(x_i) + f(x_{i-1})}{12h}$ 
 $O(h^2)$ 

$$f''(x_i) = \frac{-f(x_{i+2}) + 16f(x_{i+1}) - 30f(x_i) + 16f(x_{i-1}) - f(x_{i-2})}{12h^2} \qquad O(h^4)$$

Third Derivative

$$f'''(x_i) = \frac{f(x_{i+2}) - 2f(x_{i+1}) + 2f(x_{i-1}) - f(x_{i-2})}{2h^3} \qquad O(h^2)$$

$$f'''(x_i) = \frac{-f(x_{i+3}) + 8f(x_{i+2}) - 13f(x_{i+1}) + 13f(x_{i-1}) - 8f(x_{i-2}) + f(x_{i-3})}{8h^3} O(h^4)$$

Fourth Derivative

$$f''''(x_i) = \frac{f(x_{i+2}) - 4f(x_{i+1}) + 6f(x_i) - 4f(x_{i-1}) + f(x_{i-2})}{h^4} \qquad O(h^2)$$

$$f''''(x_i) = \frac{-f(x_{i+3}) + 12f(x_{i+2}) + 39f(x_{i+1}) + 56f(x_i) - 39f(x_{i-1}) + 12f(x_{i-2}) + f(x_{i-3})}{6h^4} \qquad O(h^4)$$

# Example 19.1 (1/2)

Q. Recall that at in Ex. 4.4 we estimated the derivative of f(x) at x=0.5 using forward differences and a step size of h=0.25. The results are summarized in the table below. The exact value of f'(0.5)= -0.9125.

$$f(x) = -0.1x^4 - 0.15x^3 - 0.5x^2 - 0.25x + 1.2$$

|                | Backward O(h) | Centered O(h <sup>2</sup> ) | Forward O(h) |
|----------------|---------------|-----------------------------|--------------|
| Estimate       | -0.714        | -0.934                      | -1.155       |
| ε <sub>t</sub> | 21.7%         | -2.4%                       | -26.5%       |

Repeat the computation with high accuracy formulas.



## Example 19.1 (2/2)

Sol) 
$$x_{i-2} = 0$$
  $f(x_{i-2}) = 1.2$   
 $x_{i-1} = 0.25$   $f(x_{i-1}) = 1.1035156$   
 $x_i = 0.5$   $f(x_i) = 0.925$   
 $x_{i+1} = 0.75$   $f(x_{i+1}) = 0.6363281$   
 $x_{i+2} = 1$   $f(x_{i+2}) = 0.2$ 

Nu

• Forward difference of O(h<sup>2</sup>) is computed as

$$f'(0.5) = \frac{-0.2 + 4(0.6363281) - 3(0.925)}{2(0.25)} = -0.859375 \qquad \varepsilon_t = 5.82 \%$$
  
• Backward difference of O(h<sup>2</sup>) is computed as  

$$f'(0.5) = \frac{3(0.925) - 4(1.1035156) + 1.2}{2(0.25)} = -0.878125 \qquad \varepsilon_t = 3.77 \%$$
  
• Backward difference of O(h<sup>4</sup>) is computed as  

$$f'(0.5) = \frac{-0.2 + 8(0.6363281) - 8(1.1035156) + 1.2}{12(0.25)} = -0.9125 \qquad \varepsilon_t = 0 \%$$
  
merical Methods 2010-2

## **Richardson Extrapolation**

- As with integration, the Richardson extrapolation can be used to combine two lower-accuracy estimates of the derivative to produce a higheraccuracy estimate.
- For the cases where there are two  $O(h^2)$  estimates and the interval is halved  $(h_2=h_1/2)$ , an improved  $O(h^4)$  estimate may be formed using:

$$D = \frac{4}{3}D(h_2) - \frac{1}{3}D(h_1)$$

• For the cases where there are two  $O(h^4)$  estimates and the interval is halved  $(h_2=h_1/2)$ , an improved  $O(h^6)$  estimate may be formed using:

$$D = \frac{16}{15} D(h_2) - \frac{1}{15} D(h_1)$$

• For the cases where there are two  $O(h^6)$  estimates and the interval is halved  $(h_2=h_1/2)$ , an improved  $O(h^8)$  estimate may be formed using:

$$D = \frac{64}{63}D(h_2) - \frac{1}{63}D(h_1)$$

14

## Example 19.2

 Q. Using the same function as in Ex.19.1, estimate the first derivative at x=0.5 for a step size of h1=0.5, and h2=0.25. Use the Richardson extrapolation to compute improved estimate. The exact solution is -0.9125.

$$f(x) = -0.1x^4 - 0.15x^3 - 0.5x^2 - 0.25x + 1.2$$

Sol.) The first derivative with centered difference  $x_{i-2} = 0$   $f(x_{i-2}) = 1.2$   $D(0.5) = \frac{0.2 - 1.2}{1} = -1.0$   $\varepsilon_t = -9.6\%$   $x_{i-1} = 0.25$   $f(x_{i-1}) = 1.1035156$   $D(0.25) = \frac{0.6363281 - 1.103516}{0.5} = -0.934375$   $\varepsilon_t = -2.4\%$   $x_{i+1} = 0.75$   $f(x_{i+1}) = 0.6363281$  $x_{i+2} = 1$   $f(x_{i+2}) = 0.2$ 

Using the Richardson extrapolation, the improved Estimate is

$$D = \frac{4}{3}(-0.934375) - \frac{1}{3}(-1) = -0.9125$$

Numerical Methods 2010-2

## **Unequally Spaced Data**

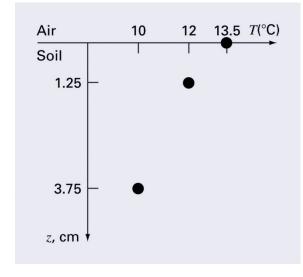
- One way to calculated derivatives of <u>unequally</u> <u>spaced data</u> is to <u>determine a polynomial fit and</u> <u>take its derivative at a point.</u>
- As an example, using a second-order Lagrange polynomial to fit three points and taking its derivative yields:

$$f'(x) = f(x_0) \frac{2x - x_1 - x_2}{(x_0 - x_1)(x_0 - x_2)} + f(x_1) \frac{2x - x_0 - x_2}{(x_1 - x_0)(x_1 - x_2)} + f(x_2) \frac{2x - x_0 - x_1}{(x_2 - x_0)(x_2 - x_1)}$$

Numerical Methods 2010-2

## Example 19.3

A temperature is measured inside the soil as shown below.
 Compute the heat flux into the ground at the air-soil interface.



$$q(z=0) = -k \left. \frac{dT}{dz} \right|_{z=0}$$

where q(x)=heat flux (W/m<sup>2</sup>), k=thermal conductivity for soil (=0.5 W/(m·K), T=Temperature(K),

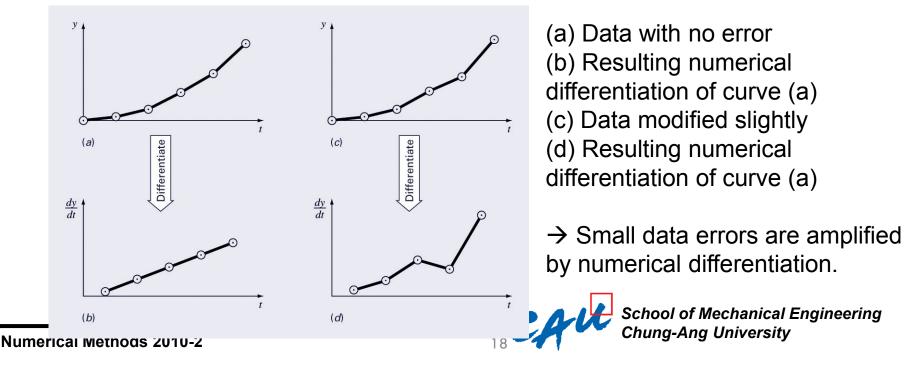
z=distance measured from the surface into the soil.

$$f'(0) = 13.5 \frac{2(0) - 0.0125 - 0.0375}{(0 - 0.0125)(0 - 0.0375)} + 12 \frac{2(0) - 0 - 0.0375}{(0.0125 - 0)(0.0125 - 0.0375)} + 10 \frac{2(0) - 0 - 0.0125}{(0.0375 - 0)(0.0375 - 0.0125)} = -1440 + 1440 - 133.333 = -133.333 \ K/m$$

$$q(z = 0) = -0.5 \frac{W}{m K} \left( -133.333 \frac{W}{m} \right) = 66.667 \frac{W}{m^2}$$
School of Mechanical Engineering Chung-Ang University

#### **Derivatives** and Integrals for Data with Errors

- A shortcoming of numerical differentiation is that it tends to <u>amplify errors in data</u>, whereas integration tends to smooth data errors.
- One approach for taking derivatives of data with errors is to <u>fit a</u> <u>smooth, differentiable function to the data and take the derivative</u> <u>of the function.</u>



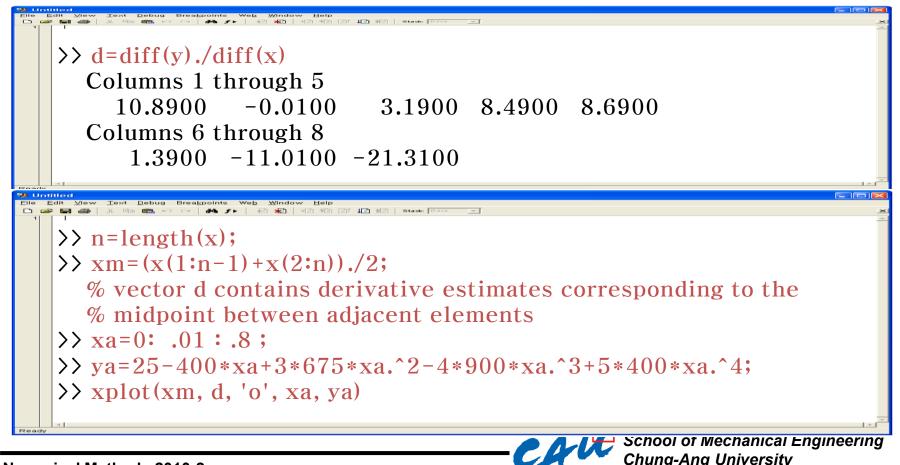
#### **Numerical Differentiation with MATLAB**

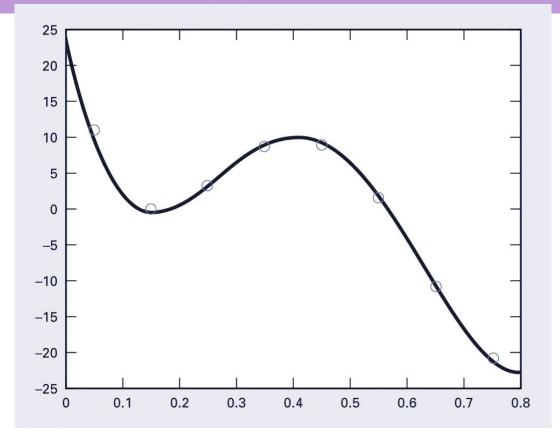
- MATLAB has two built-in functions to help take derivatives, diff and gradient:
- diff(x)
  - Returns the difference between adjacent elements in x

| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                    |  |  |  |  |  |  |  |
|----------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|
| <pre>&gt;&gt; diff(x) ans = Columns 1 through 5 0.1000 0.1000 0.1000 0.1000 Columns 6 through 8 0.1000 0.1000 0.1000</pre> |  |  |  |  |  |  |  |

#### **Numerical Differentiation with MATLAB**

- diff(y)./diff(x)
  - Returns the difference between adjacent values in y divided by the corresponding difference in adjacent values of x





School of Mechanical Engineering Chung-Ang University

#### **Numerical Differentiation with MATLAB**

fx = gradient(f, h)

Determines the derivative of the data in f at each of the points. The program uses forward difference for the first point, backward difference for the last point, and centered difference for the interior points. h is the spacing between points; if omitted h=1.

- The major advantage of <u>gradient over diff is gradient's result is</u> the same size as the original data.
- Gradient can also <u>be used to find partial derivatives for matrices</u>:
   [fx, fy] = gradient(f, h)

Chuna-Ana University

