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-hapter Objectives

® Understanding the application of high-accuracy numerical
differentiation formulas for equispaced data.

® Knowing how to evaluate derivatives for unequally spaced data.

® Understanding how Richardson extrapolation is applied for
numerical differentiation.

® Recognizing the sensitivity of numerical differentiation to data
error.

® Knowing how to evaluate derivatives in MATLAB with the diff and
gradient functions.

® Knowing how to generate contour plots and vector fields with
MATLAB.
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uction to Differentiation

The one dimensional forms of some constitutive laws commonly used

. Physical : Proportional
Law Equation y Gradient Flux P
Area constat
ier’ dT
Fourier's q=—k— Heat conduction | Temperature Heat Thermla!
law dx conductivity
Fick's J = —D% Mass diffusion | Concentration Mass Diffusivity
law dx
’ ’ dh i
D’Arcy g=—k— Flow throug.h Head Flow Hydraqllg
law dx porous media conductivity
Ohm's J = —ad—V Current flow Voltage Current Electrlc?a_l
law dx conductivity
Newton's du . . Shear Dynamic
viscosity | T=—u— Fluids Velocity _ _
| dx Stress Viscosity
aw
’ AL ’
Hooke's o=E— Elasticity Deformation Stress Young's
law L modulus
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Differentiation

® The mathematical definition of a derivative begins with a
difference approximation:
Ay _ f(xl. +Ax)—f(xl.)

Ax Ax

and as Ax is allowed to approach zero, the difference
becomes a derivative:

Sfx + Ax)

£ PN
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_-Accuracy Differentiation

Formulas

® TJaylor series expansion can be used to
generate high-accuracy formulas for
derivatives by using linear algebra to
combine the expansion around several
points.

® Three categories for the formula include
forward finite-difference, backward finite-
difference, and centered finite-difference.

blél School of Mechanical Engineering
5 c# Chung-Ang University

Numerical Methods 2010-2



ifferentiation derived
from Taylor series expansions

® There are forward difference, backward difference and centered
difference approximations, depending on the points used:

® Forward: 1o

f'(xi): f(xi+1)h_f(xi) +O(h)

® Backward:

f'(xi): f(xi)_hf('xil) +O(h)

® C(Centered:

f'(xi) _ f(xi+1)2_hf(xil) 4 O(hz)
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m-\ccuracy Differentiation

® Forward Taylor series expansion

fr)= £+ S e LD

fr(xi) _ f(xi+1)h_f(xi) —f”z(ici)h-l-O(hz)

® Forward-difference approximation of 1st derivative excluding the
second and higher derivative term (In chapter 4)

f’(xi) _ f(xi+1)h_ f(‘xi) -|-O(h)

® Forward-difference approximation of 2nd derivative

f(xi+2)_2f(xi+l)+f(xi) -|-0(h)
hz

f”(xi) —
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m-\ccuracy Differentiation

® Forward-difference approximation of 1st derivative including
2nd derivative term

FC) =) S ) =20 )+ S0 o

Fix)= h o

_f(xi+2)+4f(xi+l)_3f(xi) +O(h2)
2h

S(x) =

® Notice that inclusion of second-derivative term has
improved the accuracy to O(h?) .
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qlvard Finite-Difference

First Derivative Error
Flx) = f(xi—!-l)h_f(xi) O(h)
f;(xi) = —f (x; ) + 4.2;-’-'“ = af(-’:i) O(hz)

Second Derivative
fxip) — 2f(15-+ D) +f(x)

f'&x) = 2 o
f"(xj) . _f(xl.+_3J - 4f(x*_2)h2— -Sf(xl'.-..1) - 2_f(.1'l) O(h}!)
Third Derivative

fw(x,') — f(xi-i-B) - Sf(x|'+-2) -: Sf(xH-!.) . f(xi) O(h)

h
Fry= =3 Gud + 14 (o) — 24F () + 18£(xi) = 9 ) o)
2h’

Fourth Derivative

f"”(xl‘) - f(xii-s'l-) = 4f(xf--3) + é.ilgx.-z) T 4f(x¢'+]) +f(x|) O(h)
£y = —2f(xs) + 11 f(,0) — 24 f (xi3) + 20f (%) — 14f(x;.p) + 3f (x) oK)

h4



QWard Finite-Difference

First Derivative Error
Fix) = f(x) _;,f (x;-1) o)
o) = 3f(x) — 4fg;i--1) + f(x; o) O(hz)

Second Derivative

F&) = 2f(xi) + f(xin)

)= o O(h)
F(x) = 2f (X)) — Sf (x;-1) ;4f (x;i_2) — f(x;_3) 0 (hz)
Third Derivative

fm(xf) = f(xf) = Bf('xj_|) :33}?(:‘!,'_1) T f(xj_j) O(h)
F7(x) = Sfx) — 18f(x;_,) + 24}‘-(1'2-2) — 14f(x.3) + 3f(x;_4) o)

2h

Fourth Derivative

f”"(x,') = f(xi) i 4)‘—(1;'--]) =+ bf(':;q 2) o 4f(xt3) e f(xi 4) O(h)
£y = 3f(x) — 147fGx,_ )+ 20f(x, ) — 24f (x5 + 11 f(x,_) — 2f(x,_s) o)

h4



qered Finite-Difference

First Derivative Error
£y = L Q_hf — o)
f’(.rf) = —f(xi0) + Bf(xf---ll)g_h Bf(xi—l) + f(xi2) O(h")
Second Derivative

froy= 1Sl = 2’; Sl o)
) = —f (i) + 10f(x;y)) — 31021 Exe) + 16f () = f(x) oY)
Third Derivative

£y = flx.,,) — 2f (x,..+,)2:32 fx ) —fx_,) o)
() = —f(xi3) + Bf(xf-rz) -1 Sf(xi-+ 1;:; 13f(xi) — 8f(xi) + f(xi) O(h%)

Fourth Derivative
N F i) — 4f (i) + 0F (x) — 4f (xi) + f(x;5)
J (x)= T
—f x5 + 12f(x,.,) + 39f (x,.) + S6f(x) — 39f(x,_) + 12f(x,,) + f(x;_5)
6h*

oh®

fﬂ'ﬂ (x‘,)' _— O(h‘t)



_Example 19.1 (1/2)

® Q. Recall that at in Ex. 4.4 we estimated the derivative of f(x) at
x=0.5 using forward differences and a step size of h=0.25. The
results are summarized in the table below. The exact value of
f(0.5)=-0.9125.

f(x)=-0.1x*—0.15x" —=0.5x* —0.25x +1.2

Backward O(h)

Centered O(h?)

Forward O(h)

Estimate

-0.714

-0.934

-1.155

E¢

21.7%

-2.4%

-26.5%

® Repeat the computation with high accuracy formulas.
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S Example 19.1 (2/2)

® SOI) X, =0 fx_,)=12
x,_,=0.25 f(x._,)=1.1035156
x,=0.5 S (x,)=0.925
x,, =0.75 f(x,,)=0.6363281
Xy =1 f(x,,)=02

® Forward difference of O(h?) is computed as

F10.5) = 02 +A06363281)=3(0925) _ o cne - =580 %
2(0.25)
® Backward difference of O(h?) is computed as
0.5 20929 ~41L10351560) +12 _ (o0 - =3.77 %
2(0.25)

® Backward difference of O(h?) is computed as
10.5) = 02+ 8(0.636328D) ~8(11035156)+1.2 5, - 0%
12(0.25)
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q\ardson Extrapolation

® As with integration, the Richardson extrapolation can be used to combine
two lower-accuracy estimates of the derivative to produce a higher-
accuracy estimate.

® For the cases where there are two O(h?) estimates and the interval is
halved (h,=h,/2), an improved O(h*) estimate may be formed using:

4

3

® For the cases where there are two O(h*) estimates and the interval is
halved (h,=h,/2), an improved O(h®) estimate may be formed using:

16 1
D=-—D(h,)——D(h)
15 15
® For the cases where there are two O(h°) estimates and the interval is
halved (h,=h,/2), an improved O(h®) estimate may be formed using:

64 1
D=— D(h,)—— D(h
3 D) == D)
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S Example 19.2

® Q. Using the same function as in Ex.19.1, estimate the first
derivative at x=0.5 for a step size of h1=0.5, and h2=0.25. Use
the Richardson extrapolation to compute improved estimate.
The exact solution is -0.9125.

f(x)=-0.1x" —0.15x° —0.5x* —0.25x+1.2

Sol.) The first derivative with centered difference X, =0 f(x,)=12
0.2-1.2 x,_,=0.25 f(x,_)=1.1035156

D(0.5) = =—1.0 &=—9.6% % =0.5 f(xi) — 0.925
D(0.25) = 203 6328(1)_51'103 216 .934375 £=—24% X =0.75 S(x.,,)=0.6363281

. xi+2 - 1 f(xi+2) - 02

Using the Richardson extrapolation, the improved Estimate is

D= %(—0.934375) —%(—1) =-0.9125
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qequally Spaced Data

* One way to calculated derivatives of unequally

spaced data is to determine a polynomial fit and

take its derivative at a point.

* As an example, using a second-order Lagrange
polynomial to fit three points and taking its
derivative yields:

2x—x,— 2X—X,—X, 2x—Xx,—X,

f(x)= f(xo)( Y 2)+f(x1)(l_xo)(xl_x2)+f(x2)(x2_xo)(x2—xl)
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Example 19.3

® A temperature is measured inside the soil as shown below.
Compute the heat flux into the ground at the air-soil interface.

2:“ 1|0 112 1%5 7(°C) q(Z _ O) _ _kd_T

1.25 ® Z z=0

where q(x)=heat flux (W/m?),
k=thermal conductivity for soil (=0.5 W/(m-K),

35— @ T=Temperature(K),
o z=distance measured from the surface
into the soil.
£(0)= 2(0)-0.0125-0.0375 1 2(0)—0-0.0375

"~ (0-0.0125)(0-0.0375)  (0.0125-0)(0.0125-0.0375)
2(0)—0-0.0125
(0.0375-0)(0.0375-0.0125)

=—-1440+1440-133.333=-133.333 K/m

q(z=0)= _0_5£(_133_333 Kj - 66.667K2
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atives and Integrals for
Data with Errors

* A shortcoming of numerical differentiation is that it tends to

amplify errors in data, whereas integration tends to smooth data

errors.

* One approach for taking derivatives of data with errors is to fit a
smooth, differentiable function to the data and take the derivative

of the function.

(a) Data with no error

(b) Resulting numerical
differentiation of curve (a)
(c) Data modified slightly
(d) Resulting numerical
differentiation of curve (a)

]
=
©
=
=
1)
b
(]
=
[a]

&

5 - Small data errors are amplified
0 d by numerical differentiation.
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and gradient:
o diff(x)
— Returns the difference between adjacent elements in x

W f=@(x) 0.2+25%xx-200%x."2+675*x.”3-900*x."4+400%x.”5;
>>x=0:0.1:0.8;
> v =1(x) s

>> diff(x)
ans =
Columns 1 through 5
0.1000 0.1000 0.1000 0.1000 0.1000
Columns 6 through 8
0.1000 0.1000 0.1000
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— Returns the difference between adjacent values in y divi
by the corresponding difference in adjacent values of x

>> d=diff(y)./diff(x)
Columns 1 through 5
10.8900 -0.0100 3.1900 8.4900 8.6900

Columns 6 through 8
1.3900 -11.0100 -21.3100

>> n=length(x);
>> xm=(x(1:n-1)+x(2:n))./2;
% vector d contains derivative estimates corresponding to the
% midpoint between adjacent elements
>> xa=0: .01:.8;
>> va=25-400*xa+3*675*xa.”2-4+*900*xa.”3+5*400=*xa.”4;
>> xplot(xm, d, 'o', xa, ya)
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mal Differentiation with MATLAB

« fx = gradient(f, h)
Determines the derivative of the data in T at each of the points.
The program uses forward difference for the first point, backward
difference for the last point, and centered difference for the
interior points. h is the spacing between points; if omitted h=1.

« The major advantage of gradient over diff is gradient’s result is
the same size as the original data.

 (Gradient can also be used to find partial derivatives for matrices:
[x, fy] = gradient(f, h)

o

Eite  Lollt e CIEIE remkpoints  Webh o Aindow el

M s e = s, b - =N 1]
1

>> dy=gradient(y, 0.1)
dy =
Columns 1 through 5
10.8900 5.4400 1.5900 5.8400 8.5900
Columns 6 through 8
5.0400 -4.8100 -16.1600 -21.3100

sssss
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>>xa=0: .01:.8;
>> va=25-400*xa+3*675*xa.”2-4+%900*xa.”3+5*%400*xa.”4;
>> xplot(x, dy, 'o', xa, va)

| | | | | | |
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
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