Chapter 3 (conti.)

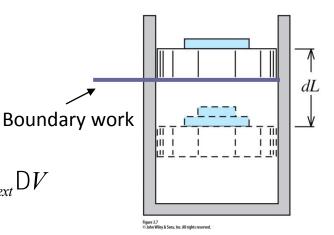
First Law of Thermodynamics and Energy Equation

Work done at the moving boundary of a simple compressible system

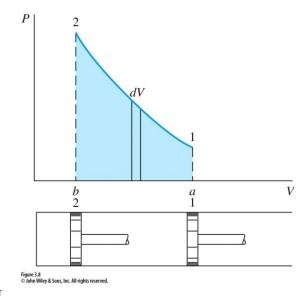
• In a quasi-equilibrium process,

$$dW_b = FdL = PAdL = PdV$$

cf. non-equilibrium process:
$$dW = (p_{ext}A)dL = p_{ext}DV$$



- ex) in a compression process,

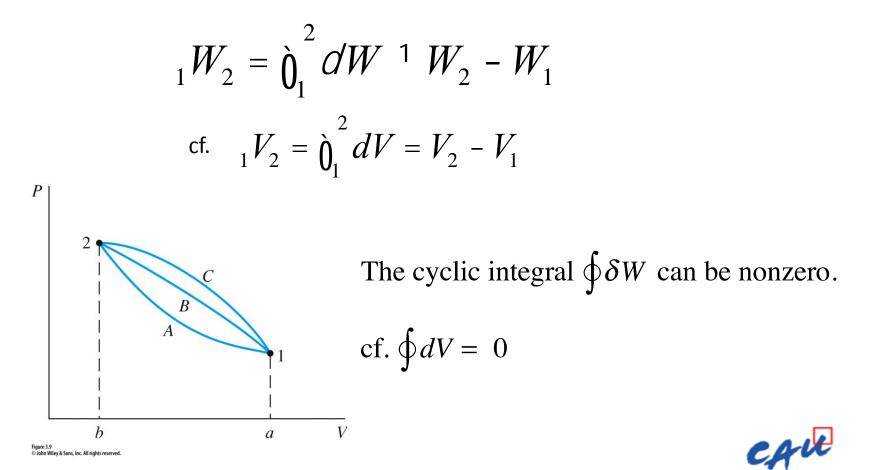


$$_{1}W_{2} = \grave{0}_{1}^{2} \mathcal{O}W = \grave{0}_{1}^{2} P dV$$

= the **area** of the shaded region under the P–V curve (a–1–2–b–a)

Thermodynamics I

• As discussed earlier, work is a path function, and δW is an inexact differential. In other words, work is not a thermodynamic property



Thermodynamics I

School of Mechanical Engineering

Work by the moving boundary in special cases

If the volume is held constant (dV = 0), then the boundary work equation becomes

2 1 2 V V P-V diagram for P = ConstantP-V diagram for V = Constant $W_b = \int_0^2 P dV = P \int_0^2 dV$ $W_b = \int_{-1}^{2} P dV = 0$ $= P(V_2 - V_1)$

Thermodynamics I

School of Mechanical Engineering

If the Pressure is held constant (dP = 0), then

the boundary work equation becomes

Example 3.4

 F_{1}

Figure 3.10

© John Wiley & Sons, Inc. All rights reser

x

Consider a slightly different piston/cylinder arrangement, as shown in Fig. 3.10. In this example, the piston is loaded with a mass m_p the outside atmosphere P_0 , a linear spring and a single point force F_1 . The piston traps the gas inside with a pressure P. A force balance on the piston in the direction of motion yields

$$m_{p}a = 0 = \mathring{a} F_{-} - \mathring{a} F_{-}$$

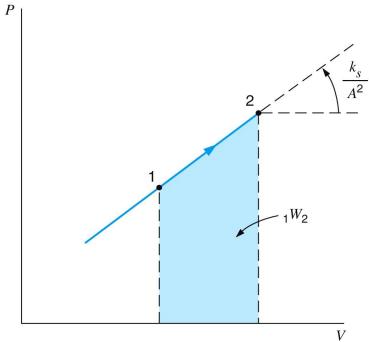
$$g \times \mathring{a} F_{-} = \mathring{a} F_{-}$$

$$\mathring{a} F_{-} = PA$$

$$m_{p} \qquad \mathring{a} F_{-} = m_{p}g + P_{o}A + k_{s}(x - x_{0}) + F_{1}$$

$$P = \left\{ m_{p}g + P_{o}A + k_{s}(x - x_{0}) + F_{1} \right\} / A$$

$$P = P_{o} + \frac{m_{p}g}{A} + \frac{F_{1}}{A} + \frac{k_{s}}{A^{2}}(V - V_{0}) = C_{1} + C_{2}V$$
slope



$$_{1}W_{2} = \int_{1}^{2} PdV = \frac{1}{2} (P_{1} + P_{2}) (V_{2} - V_{1})$$

Figure 3.11 © John Wiley & Sons, Inc. All rights reserved.

Polytropic process

$$PV^n = const$$

• The polytropic exponent n indicates the type of the process

Process	Exponent n
Constant pressure (or isobaric) process	0
Constant volume (or isochoric) process	±inf
Constant T (Isothermal) process of ideal gas	1

$$PV^{n} = const$$
$$P_{1}V_{1}^{n} = P_{2}V_{2}^{n} = const$$
$$P = \frac{const}{V^{n}} = \frac{P_{1}V_{1}^{n}}{V^{n}} = \frac{P_{2}V_{2}^{n}}{V^{n}}$$

School of Mechanical Engineering

Integration in a polytropic process

• When $n^{-1}1$,

$$\int_{1}^{2} P \, dV = const \int_{1}^{2} \frac{dV}{V^{n}} = const \left(\frac{V^{-n+1}}{-n+1} \right) \Big|_{1}^{2}$$
$$= \frac{const}{1-n} \left(V_{2}^{1-n} - V_{1}^{1-n} \right) = \frac{P_{2}V_{2}^{n}V_{2}^{1-n} - P_{1}V_{1}^{n}V_{1}^{1-n}}{1-n}$$
$$= \frac{P_{2}V_{2} - P_{1}V_{1}}{1-n} \Rightarrow \frac{mR(T_{2} - T_{1})}{1-n} \text{ (ideal gas)}$$

School of Mechanical Engineering

Work in a Polytropic Process

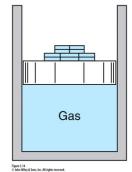
Example 3.6

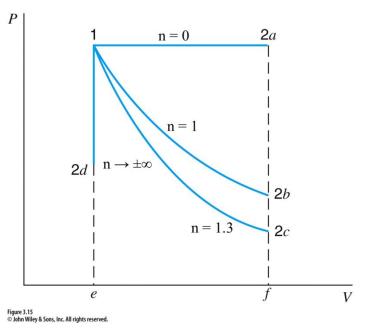
An ideal gas in a piston cylinder starts out with 200 kPa, 0.04 m³. Let us look at 4 different possible processes and find the work for each case. **Solution**

a. Process:
$$P = C$$
, Heat the gas to $V_2 = 0.1 \text{ m}^3$
 ${}_1W_2 = \int_{1}^{2} P \, dV = P \int dV = P (V_2 - V_1)$
 $= 200 \text{ kPa} \times (0.1 - 0.04) \text{ m}^3 = 12.0 \text{ kJ}$

b. Process: T = C, Heat the gas to $V_2 = 0.1 \text{ m}^3$ Ideal gas: PV = m RT = C so polytropic with n = 1 ${}_1W_2 = \int_{1}^{2} P dV = P_1V_1 \ln \frac{V_2}{V_1}$ $= 200 \text{ kPa} \times 0.04 \text{ m}^3 \times \ln \frac{0.1}{0.04} = 7.33 \text{ kJ}$

To do the process the mass (load) on piston varies





Work in a Polytropic Process

Example 3.6 continued

c. Process: Polytropic with n = 1.3, Increase volume to $V_2 = 0.1 \text{ m}^3$

$$P_{2} = P_{1} (V_{1} / V_{2})^{1.3} = 200 \text{ kPa} \times (0.04 / 0.1)^{1.3} = 60.77 \text{ kPa}$$

$${}_{1}W_{2} = \frac{1}{1 - n} (P_{2}V_{2} - P_{1}V_{1})$$

$$= \frac{1}{1 - 1.3} (60.77 \times 0.1 - 200 \times 0.04) \text{ kPa m}^{3}$$

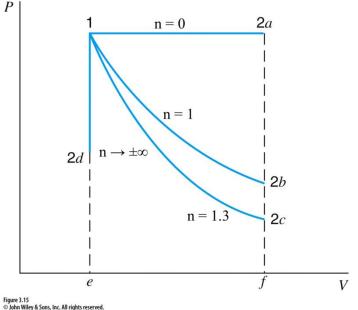
$$= 6.41 \text{ kJ}$$

d. Process: V = C, Cool the gas to $P_2 = 100$ kPa ${}_1W_2 = \int_{1}^{2} P \, dV = 0$

Comment:

To do the process (c) the mass (load) on piston varies To do the process (d) the piston is locked in place





Heat

- Heat (Q) is defined as the form of energy that is <u>transferred across the</u> <u>boundary</u> of a system at a given temperature to another system (or the surroundings) at a lower temperature <u>by virtue of the temperature</u> <u>difference between the two system</u>.
 - Transient phenomenon (A body never contains heat.)
 - ✓ A path function that has an inexact differential.

$$\dot{\mathbf{0}}_{1}^{2} \mathcal{O} Q = {}_{1} Q_{2}$$

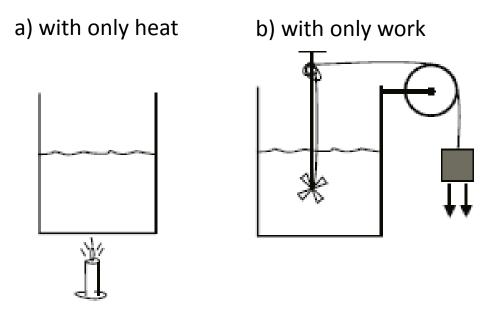
✓ Unit: joule, calorie (heat needed to raise 1 g of water from 14.5°C to 15.5°C, 1 cal = 4.2 J)

- *Adiabatic process* : a process with no heat transfer (*Q*=0)
- Specific heat transfer

$$q \circ \frac{Q}{m}$$

Equivalence of work and heat

Joule : it is possible to raise the temperature of H_2O



Both transient phenomena Both boundary phenomena Both path function and inexact differential

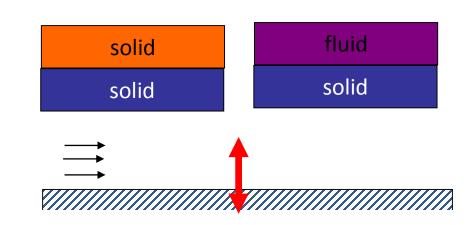
Heat Transfer Modes

Conductive heat transfer

$$\dot{Q}_{cond} = -kA\frac{dT}{dx}$$

Convective heat transfer

$$\dot{Q}_{conv} = hA\Delta T$$



• Radiative heat transfer

$$\dot{Q}_{rad} = \varepsilon A \sigma T^4$$

Internal Energy – a Thermodynamic Property

- *U* : internal energy (extensive property)
- u = U/m: specific internal energy (intensive property)
- Internal energy is a thermodynamic property that can substitute for an independent property of a pure substance. In the case of a pure substance, therefore, the internal energy can be obtained from two independent thermodynamic properties. (refer to table B.1.1 and B.1.2)
- In the steam tables, the internal energy values are obtained from calculation <u>relative to a reference</u>: zero for saturated liquid at the triple-point temperature.
- In the liquid-vapor saturation region,

$$U = U_{liq} + U_{vap}, \quad mu = m_{liq}u_f + m_{vap}u_g$$
$$u = (1 - x)u_f + xu_g$$
$$u = u_f + xu_{fg}$$

Thermodynamics I

School of Mechanical Engineering

The Internal Energy

Example 3.8

Determine the missing property (P, T, v, x) for water at each of the following states:

a. $T = 300^{\circ}$ C, u = 2780 kJ/kg; **b.** P = 200 kPa, u = 2000 kJ/kg

Solution

a) Table B.1.1 at 300^oC: $u > u_g = 2563.0 \text{ kJ/kg}$, so superheated vapor, x is undefined,

Table B.1.3 between 1600 and 1800 kPa at 300° C:

1600 kPa, 300°C: $u = 2781.03 \text{ kJ/kg}; v = 0.15862 \text{ m}^3/\text{kg}$ 1800 kPa, 300°C: $u = 2776.83 \text{ kJ/kg}; v = 0.14021 \text{ m}^3/\text{kg}$ linear interpolation:

$$P = 1600 + 200 \frac{2780 - 2781.03}{2776.83 - 2781.03} = 1600 + 200 \times 0.24524$$

= 1648 kPa

 $v = 0.15862 + (0.14021 - 0.15862) \times 0.24524 = 0.1542 \text{ m}^3/\text{kg}$

а 300 C h 212 C C.P. 2000 kPa 1800 kPa 300 600 kPa 212 h ostates used for table values School of Mechanical Engineering

C.P.

The Internal Energy

Example 3.8 continued

Determine the missing property (P, T, v, x) for water at each of the following states:

a. $T = 300^{\circ}$ C, u = 2780 kJ/kg; **b.** P = 200 kPa, u = 2000 kJ/kg

Solution

b) Table B.1.2 at 2000 kPa:

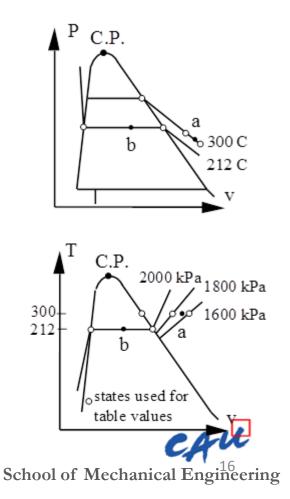
 $u_f = 906.4 < u < u_g = 2600.3 \text{ kJ/kg} \quad \Rightarrow \text{ two-phase}$

$$u = 2000 = u_{f} + x u_{fg} = 906.4 + x \times 1693.8$$

$$\Rightarrow \quad x = 0.6456$$

$$v = v_{f} + x v_{fg} = 0.001 \ 177 + 0.6456 \times 0.098 \ 45$$

$$= 0.064 \ 74 \ m^{3}/kg$$



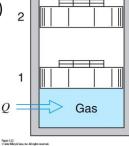
Enthalpy – a Thermodynamic Property

- $H \equiv U + PV$ (extensive property)
- *h* = *H*/*m* = *u* + *pv* : specific enthalpy (intensive property)
- For volumetric expansion of a gas in a *constant-pressure* quasiequilibrium process, $\delta Q = dU + \delta W$ (Negligible KE & PE) 2

$$\delta Q = dU + PdV$$

$$\delta Q = d(U + PV) = dH$$

$$_1Q_2 = H_2 - H_1$$



- In the steam tables, the enthalpy values are obtained from calculation <u>relative to a reference</u>.
- In the liquid-vapor saturation region,

Thermodynamics I

School of Mechanical Engineering