
Chapter 3 (conti.)

First Law of Thermodynamics 
and Energy Equation
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• In a quasi-equilibrium process,

– ex) in a compression process,

Work done at the moving boundary of a simple 
compressible system 

Boundary workdWb = FdL = PAdL = PdV

dW = (pext A)dL = pextDVcf. non-equilibrium process:
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• As discussed earlier, work is a path function, and δW is an 
inexact differential. In other words, work is not a 
thermodynamic property

1W2 = dW ¹ W2 -W1
1

2

ò

1V2 = dV = V2 -V1
1

2

òcf.
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If the volume is held constant (dV = 0), then the

boundary work equation becomes
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If the Pressure is held constant (dP = 0), then

the boundary work equation becomes
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Work by the moving boundary in special cases
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Example 3.4

Consider a slightly different piston/cylinder arrangement, as shown in Fig. 
3.10. In this example, the piston is loaded with a mass mp the outside 
atmosphere P0, a linear spring and a single point force F1. The piston traps the 
gas inside with a pressure P. A force balance on the piston in the direction of 
motion yields
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Polytropic process

PV n = const

Process Exponent n

Constant pressure (or isobaric) process 0

Constant volume (or isochoric) process ±inf

Constant T (Isothermal) process of ideal gas 1

• The polytropic exponent n indicates the type of the process
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Integration in a polytropic process

• When           , 

• When n = 1,

n ¹1
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Example 3.6 

An ideal gas in a piston cylinder starts out with 200 kPa, 0.04 m3. Let us look at 4 

different possible processes and find the work for each case. 

Solution   __________________________________________________ 
 

a. Process:  P = C,  Heat the gas to V2 = 0.1 m3  

         1W2 = 

1

2

 P dV  = P ∫ dV = P (V2 − V1)  

      = 200 kPa × (0.1 – 0.04) m3 = 12.0 kJ 

    
b. Process:  T = C,  Heat the gas to V2 = 0.1 m3  

    Ideal gas:  PV = m RT = C so polytropic with n = 1 

         1W2 = 

1

2

 P dV  = P1V1 ln 
V2

V1
  

      = 200 kPa × 0.04 m3 × ln 
0.1

0.04
 = 7.33 kJ 

To do the process the mass (load) on piston varies 
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Example 3.6 continued 

   

c. Process:  Polytropic with n = 1.3,  Increase volume to V2 = 0.1 m3  

   P2 = P1 (V1 / V2)
1.3

 = 200 kPa × (0.04 / 0.1)
1.3

 = 60.77 kPa 

   1W2 = 
1

1 − n
 (P2V2 − P1V1)  

          = 
1

1 – 1.3
 (60.77 × 0.1 – 200 × 0.04) kPa m3  

           = 6.41 kJ 

 

d. Process:  V = C,  Cool the gas to P2 = 100 kPa  

         1W2 = 

1

2

 P dV  = 0 

Comment: 

To do the process (c) the mass (load) on piston varies 

To do the process (d) the piston is locked in place
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Heat

• Heat (Q) is defined as the form of energy that is transferred across the 
boundary of a system at a given temperature to another system (or the 
surroundings) at a lower temperature by virtue of the temperature 
difference between the two system.

✓ Transient phenomenon (A body never contains heat.)

✓ A path function that has an inexact differential.

✓ Unit: joule, calorie (heat needed to raise 1 g of water from 14.5°C to 15.5°C, 1 cal = 4.2 J)

• Adiabatic process : a process with no heat transfer  (Q=0)

• Specific heat transfer

dQ =
1

2

ò 1Q2

q º
Q
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Equivalence of work and heat

Joule : it is possible to raise the temperature of H2O

a) with only heat b) with only work

Both transient phenomena

Both boundary phenomena

Both path function and inexact differential
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Heat Transfer Modes

• Conductive heat transfer

• Convective heat transfer

• Radiative heat transfer

solid

solid

fluid

solid
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Internal Energy – a Thermodynamic Property

• U : internal energy (extensive property)

• u = U/m : specific internal energy (intensive property)

• Internal energy is a thermodynamic property that can substitute for
an independent property of a pure substance. In the case of a pure
substance, therefore, the internal energy can be obtained from two
independent thermodynamic properties. (refer to table B.1.1 and
B.1.2)

• In the steam tables, the internal energy values are obtained from
calculation relative to a reference: zero for saturated liquid at the
triple-point temperature.

• In the liquid-vapor saturation region,
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The Internal Energy
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Example 3.8 

Determine the missing property (P, T, v, x) for water at each of the following states: 

 a.  T = 300oC, u = 2780 kJ/kg  ; b.  P = 200 kPa, u = 2000 kJ/kg 

 

Solution   __________________________________________________ 
 

a) Table B.1.1 at 300oC:  u > ug = 2563.0 kJ/kg, so superheated vapor,  

     x is undefined,   

    Table B.1.3 between 1600 and 1800 kPa at 300oC: 

 1600 kPa, 300oC:   u = 2781.03 kJ/kg;   v = 0.15862  m3/kg 

1800 kPa, 300oC:   u = 2776.83 kJ/kg;   v = 0.14021 m3/kg 

    linear interpolation:     

 P = 1600 + 200 
2780 – 2781.03

 2776.83 – 2781.03
 = 1600 + 200 × 0.24524  

   = 1648 kPa 

 

 v = 0.15862 + (0.14021 – 0.15862) × 0.24524 = 0.1542 m3/kg 
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The Internal Energy
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Example 3.8 continued 

Determine the missing property (P, T, v, x) for water at each of the following states: 

 a.  T = 300oC, u = 2780 kJ/kg  ; b.  P = 200 kPa, u = 2000 kJ/kg 

 

Solution   __________________________________________________ 
 

b) Table B.1.2 at 2000 kPa:  

  uf = 906.4 < u < ug = 2600.3 kJ/kg     two-phase   

      

   u = 2000 =  uf  + x ufEg = 906.4 + x × 1693.8    

      x = 0.6456 

        v = vf  + x vfg = 0.001 177 + 0.6456 × 0.098 45  

           = 0.064 74 m3/kg 
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Enthalpy – a Thermodynamic Property

• H ≡ U + PV (extensive property)

• h = H/m = u + pv : specific enthalpy (intensive property)

• For volumetric expansion of a gas in a constant-pressure quasi-
equilibrium process,

• In the steam tables, the enthalpy values are obtained from
calculation relative to a reference.

• In the liquid-vapor saturation region,
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(Negligible KE & PE)


