Part 2

Chapter 5

Roots: Bracketing Methods

e b@ School of Mechanical Engineering
Numerical Methods 2010-2 1 ” Chung-Ang Universi ty

Overview of Part 2

® To find the roots of general second order polynomial,
the quadratic formula is used

_ —b++b*—4ac
2a

f(x)=ax’ +bx+c=0 X

® There are many other functions
where the formula for finding

roots is not available.
- Approximate solution technique 0
to find roots of f(x)=0.

—> Bracketing methods (chap. 5)
and open methods (chap. 6)

f(x) j,:'('r) il Maximum

Root Root

Minimum f(x) >0

® Beside roots, it is often times required to find maximum and
minimum values of functions, which process is referred to as
optimization (chap. 7)

b@ School of Mechanical Engineering
c# Chung-Ang University

Numerical Methods 2010-2

Chapter Objectives

® Understanding what roots problems are and where they occur in
engineering and science.

® Knowing how to determine a root graphically.

® Understanding the incremental search method and its
shortcomings.

® Knowing how to solve a roots problem with the bisection method.

® Knowing how to estimate the error of bisection
and why it differs from error estimates for other types of root
location algorithms.

® Understanding false position method and how it differs from
bisection.

b@ School of Mechanical Engineering
3 Ck Chung-Ang University

Numerical Methods 2010-2

Introduction

® A bungee jumper’s chances of sustaining a significant injury
Increase significantly, if the free fall velocity exceeds 36 m/s after 4
sec of freefall.

® Find the maximum weight for jumper who does not match this
criterion (The drag coefficient is 0.25 kg/m)
- You can’t solve the equation explicitly for m.

v(t) = \/%:mtanh L\/?t}

® Alternative way of solving this problem is to move the v term to the
left and arrange the equation in the form of f(x)=0.

- The answer is the value of x that makes
the function f equal to zero. = roots problem.

f (m) = ﬂ tanh /%t —V(’[) =0 m is said to be implicit
Cq m

b@ School of Mechanical Engineering
c# Chung-Ang University

Numerical Methods 2010-2

Roots

® “Roots” problems, f(x)=0, occur when some function f can be

written in terms of one or more independent variables X,

® These problems often occur when a design problem presents an

iImplicit equation for a required parameter.

® As for explicit equation, the computation can be done simply

and quickly

b@ School of Mechanical Engineering
Ck Chung-Ang University

Numerical Methods 2010-2

Example 5.1 Graphical approach

® Determine the mass of the bungee jumper with a drag coefficient
of 0.25kg/m to have a velocity of 36m/s after 4 s of the free fall.

<) Command Window
Eile Edit Miew Web Window Help

">>cd =0.25; g =9.81; v=36;t=4; 1
>>mp = linspace (50, 200);
>> fp = sqrt(g*mp/cd).*tanh(sqgrt(g*cd. /mp)*t) vV,
>> plot(mp,fp), grid [gm

>> sqrt(g*145/cd)*tanh(sqrt
(g*cd/145)*1)-v

ans =
0.0456

>>sqrt(g*145/cd)*tanh(sqrt
(g*cd/145)*)

ans =

. 36.0456

Ready

W wuelivwul vi cuvitrriirval ki H el lg
Numerical Methods 2010-2 ” Chung Ang UnlverS|ty

Dﬁﬂé kA}'/ @B“

Graphical approach

® A simple method for obtaining the estimate of the root
of the equation f(x)=0 is to make a plot of the function
and observe where it crosses the x-axis.

J(x)

® Graphing the function can also indicate where roots
may be and where some root-finding methods may
fail:

a) Same sign, no roots c) Same sign, two roots

b) Different sign, one root d) Different sign, three roots 7@t

® This method is for obtaining rough estimates of roots,
not for precise ones.

= Starting guesses for numerical methods
= Understanding the properties of the functions.
= Predicting the pitfalls of the numerical methods

c b@ School ¢
Numerical Methods 2010-2 A’ Chung-A

f(x)4

A

(a)

(b)

(c)

(d)

Graphical Methods (cont.)

® f(x) f(x,) < 0 94 |
where a lower bound is x, and an upper '
bound is X,.

That is, the sign of the function changes
- Generally odd number of roots within

the interval.
Multiple ;oots when furrlction IS
O f(X|) f(xu) >0 tangential to the x axis
That is, the sign of the function does not T i
change | -
- Generally even number (including
zero) of roots within the interval.
® Exception: graphical method helps in i

this case

Discontinuous functions

c b@l School of Mechanical Engineering
Numerical Methods 2010-2 A’ Chung-Ang University

Bracketing Methods

® Trial and error methods : Require initial guesses.
- Bracketing method and open method

® Bracketing methods are based on making two initial guesses

that “bracket’ the root - that is, are on either side of the root.

® Brackets are formed by finding two guesses x, and x, where

the sign of the function changes; that is, where f(x,) f(x,) <O

—> There Is at least one real root between x, and x,

® The incremental search method tests the value of the function

at evenly spaced intervals and finds brackets by identifying

function sign changes between nelghborl?%points.

School of Mechanical Engineering
Chung-Ang University

Numerical Methods 2010-2

Incremental Search Hazards

® |f the spacing between the points of an incremental search
are too far apart, brackets may be missed due to capturing
an even number of roots within two points.

® Incremental searches cannot find brackets containing even-
multiplicity roots regardless of spacing.

® |f the spacing is too small, the search can be very time
consuming.

f) 4

=Y

:al Engineering
ity

Numerical Methods cuv.iv-« v 7

M-file to implement an incremental search (1)

function xb = incsearch(func, xmin, xmax, ns)

% finds brackets of x that contain sign changes of

% a function on an interval

% input:

% func= name of function

% xmin, xmax = endpoints of interval

% ns = (optional) number of subintervals along x

% output:

% xb(k,1) is the lower bound of the kth sign changes
% xb(k,2) is the upper bound of the kth sign changes
% If no brackets found, kb =[].

b@ School of Mechanical Engineering
. c# Chung-Ang University

Numerical Methods 2010-2

M-file to implement an incremental search (2)

if nargin <4, ns =505 end % if ns blank set to 50
% Incremental search
x = linspace (xmin, xmax, ns);
f = feval(func,x);
nb = 0, xb =[1; % xb is null unless sign change detected
for k = 1:length(x)-1
if sign(f(k)) ~= sign(f(k+1)) % check for sign change
nb =nb + 1;
xb(nb,1) = x(k);
xb(nb,2) = x(k+1);
end
end

RRRRR

Numerical Methods 2010-2

b@ School of Mechanical Engineering
]20” Chung-Ang University

M-file to implement an incremental search (3)

Elg éditlnE;;W Text QBE:ug Breagp;‘:tsbeeg H}iédow Help = —
if isempty (xb) % display that no brackets were found
disp('no brackets found')
disp('check interval or increase ns')
else
disp ('number of brackets:') %display number of
brackets
disp (nb)
end
[

-

School of Mechanical Engineering

Numerical Methods 2010-2 13% Chung-Ang University

Example 5.2 (1)

f (x) =sin(10x) +cos(3x) =0 Find the roots of f(x)

+) Command Window

File Edit Mew ‘Web MWindow Help

”>>incsearch(@x sin(10*x)+cos(3*x), 3, 6) r

nb =
0

number of brackets:
5

ans =
3.2449 3.3061
3.3061 3.3673
3.7347 3.7959
4.6531 4.7143
5.6327 5.6939

I o]

b@ School of Mechanical Engineering
140” Chung-Ang University

Numerical Methods 2010-2

Example 5.2 (2)

<} Command Window

File Edit “iew Webh MWindow Help

>

number of brackets:

0
9

ans =

3.2424
3.3636
3.7273
4.2121
4.2424
4.6970
5.1515
5.1818
5.6667

3.2727
3.3939
3.7576
4.2424
4.2727
4.7273
5.1818
5.2121
5.6970

>> [ncsearch(@x sin(10*x)+cos(3*x),3,6, 100)
nb =

Numerical Methods 2010-2

-CAW

School of Mechanical Engineering
Chung-Ang University

Bisection

® The bisection method is a
variation of the incremental
search method in which the 7
Interval is always divided in 2[-

50 100 150 —
half. | | .
T m

Root

® If f(x) f(x,) > 0 then x, turns

INto X,
6 ‘
First iteration f @2 I”
® If f(x) f(x,) < 0 then x, turns l |
INto Xu Second iteration }[é
® The absolute error is Third “f'a“"” °
reduced by a factor of 2 for o urth reration g

each iteration.

Numerical Methods 2010-2 Chung-Ang University

c”b@ School of Mechanical Engineering

Example 5.4

® Use bisection method to solve the same problem approached
graphically in Example 5.1 until the approximate error falls
below stopping criterion of €, = 0.5%.

<) |Figure No. 1 E@@
File Edit Miew |nsert Tools Window Help m C
DEEH&S hNA A, DL f(m)= g—tanh(h'[)—V(’[):O
\/ Cy " m

approximate error

new old
ro Xr
new

r

X 100%

|‘9a|: N

| |
50 100 150 200

b@ School of Mechanical Engineering
]70” Chung-Ang University

Numerical Methods 2010-2

Example 5.4

|5t|:

true Xold

r
true

X

X

True percent relative error

X" =142.7376

lteration X X, X, |, | | <, |
1 50 200 204200 405 N/A %1421;;’.772;;25%100%:12.43%
2 125 200 12 1625 23.08 13.85
3 125 162.5 143.75 13.04 0.71
4 125 143.75 134.375 6.98 5.86
5 134.375 | 143.75 139.0625 3.37 2.58
6 139.0625| 143.75 141.4063 1.66 0.93
4 141.4063| 143.75 142.5781 0.82 0.11
8 142.5781| 143.75 143.1641 0.41 0.30

Numerical Methods 2010-2

CAHW

School of Mechanical Engineering
Chung-Ang University

Programming Bisection

function [root,ea,iter]=bisect(func,xl,xu,es, maxit,varargin)

% bisect: root location zeroes
% [root,ea,iter]=bisect (func,xl,xu,es, maxit,pl,p2,...):
% uses bisection method to find the root of func
$ input:
% func = name of function
% xl, xu = iower andé upper guesses
E3 es = desired relative error (default = 0.0001%)
% maxit = maximum allowable iterations (default = 50)
% pl,p2,... = additional parameters used by func
% output:
% root = real root
% ea = approximate relative error (%)
% iter = number of iterations
if nargin<3,error('at least 3 input arguments required'),end
test = func(xl,varargin{:})*func(xu,varargini:});
if test>0,error('no sign change'),end
if nargin<4|isempty(es), es=0.0001;end
if nargin<5|isempty(maxit), maxit=50;end
iter = 0; xr = x1;
while (1)
xrold = xr;
XY = (x- + xXu)/2
iter = iter + 1;
if xr ~= 0,ea = abs(({(xr - xrold)/xr) * 100;end
test = fu ﬁc(1,varargin{:})*func(xr,varargin{:});
if test < 0
XN = XT3
elseif test > 0
Xt = XY3;
else
ea = 0;
end
if ea <= es iter >= maxit,break,end
end
root = xr; echanical Engineering

Numerical Methods 2010-2 19"" B Lhiung-any University

Bisection Error

® The absolute error after n th iternation by the bisection
method Is solely dependent on the absolute error at the start
of the process (the space between the two guesses) and the
number of iterations:

0 0 0
X —X = AX "
ES _—xf—x,o, E; =4 '2 IZ> Ea = —

® The required number of iterations to obtain a particular
absolute error can be calculated based on the initial guesses:

Ax’
n=log,| ——
&2 E_ . Ea 4 - Desired error

b@ School of Mechanical Engineering
Ck Chung-Ang University

Numerical Methods 2010-2

False Position (1)

® The false position method
IS another bracketing
method and it is very £00h
similar to bisection method

® It determines the next
guess not by splitting the
bracket in half but by
connecting the endpoints
with a straight line and
determining the location of

f(x,)

the intercept of the straight

line (x,).
— X — f(Xu)(XI _Xu)

S) - T(x)

Numerical Methods 2010-2

b@ School of Mechanical Engineering
Ck Chung-Ang University

False Position (2)

® The value of x, then
replaces whichever of the
two initial guesses yieldsa /@4
function value with the

! fx)
same sign as f(x,).

® If f(x,) f(x,) > O then x, turns
INto X,

® If f(x) f(x,) < O then x, turns
INto X,

b@ School of Mechanical Engineering
226” Chung-Ang University

Numerical Methods 2010-2

Example 5.5

® Use false position method to solve the same problem
approached graphically in Example 5.1 until the approximate
error falls below stopping criterion of €, = 0.5%.

<) |Figure No. 1 E@@
File Edit Miew |nsert Tools Window Help m C
DEEH&S hNA A, DL f(m)= g—tanh(h'[)—V(’[):O
\/ Cy " m

approximate error

new old
ro Xr
new

r

X 100%

|‘9a|: X

| |
50 100 150 200

b@ School of Mechanical Engineering
236” Chung-Ang University

Numerical Methods 2010-2

Bisection vs. False Position

® Bisection does not take into account the shape of the
function; This can be good or bad depending on the function!

) 10

®Bad: f(x)=x —1 "
Bisection

n X, X, X, g, (%0) | & (%)

1 0 1.3 0.65 100.0 35.0 10

2 0.65 1.3 0.975 33.3 2.5

3 0.975 1.3 1.1375 14.3 13.8

4 0.975 1.1375 | 1.05625 7.7 5.6

5 0.975 | 1.05625 | 1.015625 4.0 1.6

JE 5

False position

n X X, X, g, (%0) | & (%)

1 0 1.3 0.09430 90.6

2 0.09430 1.3 0.18176 48.1 81.8

3 0.18176 1.3 0.26287 30.9 73.7 .

4 0.26287 1.3 0.33811 22.3 66.2

5 0.33811 1.3 0.40788 17.1

umerical Methods 2010-

59.2 ‘!
24

