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⚫ Recognizing that Newton-Cotes integration formulas are based on the 
strategy of replacing a complicated function or tabulated data with a 
polynomial that is easy to integrate.

⚫ Knowing how to implement the following single application Newton-
Cotes formulas:

▪ Trapezoidal rule

▪ Simpson’s 1/3 rule

▪ Simpson’s 3/8 rule

⚫ Knowing how to implement the following composite Newton-Cotes 
formulas:

▪ Trapezoidal rule

▪ Simpson’s 3/8 rule 

⚫ Recognizing that even-segment-odd-point formulas like Simpson’s 1/3 
rule achieve higher than expected accuracy.

⚫ Knowing how to use the trapezoidal rule to integrate unequally spaced 
data.

⚫ Understanding the difference between open and closed integration 
formulas. 
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⚫ Integration:

is the total value, or summation, of f(x) dx over the range from a to b: 

⚫ I represents the area under the curve f(x) between x= a and b. 

 

I = f x( )
a

b

  dx
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⚫ This integral can be evaluated over a line, an area, or a volume. 

⚫ For example the total mass of gas contained in a volume is given as 

the product of the density and the volume. However, suppose that 

the density varies from location to location within a volume, it is 

necessary to sum the product

⚫ For a continuous case, the integration is expressed by 

⚫ There is strong analogy between summation and integration

→ Basis of numerical integration

1

n

i i

i

mass V
=

= 

( , , )mass x y z dxdydz=  ( )
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mass V dV= 
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⚫ The Newton-Cotes formulas are the most common numerical 

integration schemes.

⚫ Generally, they are based on replacing a complicated function 

or tabulated data with a polynomial that is easy to integrate:

where fn(x) is an nth order interpolating polynomial.

 

I = f x( )
a

b

  dx  fn x( )
a

b

  dx
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⚫ The integral can be 

approximated using a series of 

polynomials applied piecewise 

to the function or data over 

segments of constant length.

⚫ For example, three straight line 

segments are used to 

approximate the integral. 

Higher-order polynomial can be 

used for the same purpose.
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⚫ The trapezoidal rule is the first 

of the Newton-Cotes closed 

integration formulas; it uses a 

straight-line approximation for 

the function:

( )

( ) ( )
( )

( )
( ) ( )

 

( )  

( )(average height)
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⚫ An estimate for the local truncation 

error of a single application of the 

trapezoidal rule is:

where  is somewhere between a 

and b.

⚫ This formula indicates that the error 

is dependent upon the curvature of 

the actual function as well as the 

distance between the points.

⚫ Error can thus be reduced by 

breaking the curve into parts.

 

Et = −
1

12
  f ( ) b − a( )

3
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⚫ Q. Use the trapezoidal rule to numerically integrate the following 

equation from a = 0 to b = 0.8. The true solution is 1.640533.

2 3 4 5( ) 0.2 2.5 200 675 900 400f x x x x x x= + − + − +

Sol.)

→ Et= 1.640533 – 0.1728 = 1.467733 

→ t= 89.5%  

1728.0
2

232.02.0
)08.0( =

+
−=I



School of Mechanical Engineering

Chung-Ang University
Numerical Methods 2010-2

Example 17.1 (2/2)

10

Approximate error:

32 000,8800,10050,4400)( xxxxf +−+−=

60
08.0

)000,8800,10050,4400(
)(

8.0

0

32

−=
−

+−+−
=

 dxxxx
xf

56.2)8.0)(60(
12

1 3 =−−=aE

note : this value is of the same order of magnitude and sign as   

the true error. Average second derivative is not an 

accurate approximation of f’’(ξ), so a discrepancy exists

and Ea rather Et.
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⚫ One way to improve the accuracy is to divide 

the integration interval from a to b into a 

number of segments and apply the method to 

each segment.

⚫ Assuming n+1 data points are evenly spaced, 

there will be n intervals over which to 

integrate.

⚫ The total integral can be calculated by 

integrating each subinterval and then adding 

them together:

( ) ( ) ( ) ( )

( )
( ) ( )
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( ) ( )
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−

−
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If the number of 

segments is doubled, 

the error will be 

quartered



School of Mechanical Engineering

Chung-Ang University
Numerical Methods 2010-2

MATLAB Program

12



School of Mechanical Engineering

Chung-Ang University
Numerical Methods 2010-2

Example 17.2 (1/2)

13

⚫ Q. Use the two-segment and composite trapezoidal rule to estimate 

the integral of the function from a = 0 to b = 0.8. The exact value is 

1.640533.

2 3 4 5( ) 0.2 2.5 200 675 900 400f x x x x x x= + − + − +

232.0)8.0(          456.2)4.0(           2.0)0( === fff

0688.1
4

232.0)456.2(22.0
8.0 =

++
=I

%9.34                   57173.00688.1640533.1 ==−= tt εE

3

2

0.8
( 60) 0.64

12(2)
aE = − − =

Sol.

For n = 2 (h = 0.4)
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<Results for the composite trapezoidal rule to estimate the 

integral of f(x) = 0.2 + 25x – 200x2 + 675x3 – 900x4

from x = 0 to 0.8. The exact value is 1.640533>

→ As the number of segments increases, the error decreases.

n h I t (%)

2

3

4

5

6

7

8

9

10

0.4

0.2667

0.2

0.16

0.1333

0.1143

0.1

0.0889

0.08

1.0688

1.3695

1.4848

1.5399

1.5703

1.5887

1.6008

1.6091

1.6150

34.9

16.5

9.5

6.1

4.3

3.2

2.4

1.9

1.6
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⚫ One drawback of the trapezoidal rule is that the error is related to the 

second derivative of the function.

⚫ More complicated approximation formulas can improve the accuracy for 

curves - these include using (a) 2nd and (b) 3rd order polynomials.

⚫ The formulas that result from taking the integrals under these 

polynomials are called Simpson’s rules.
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⚫ Simpson’s 1/3 rule corresponds to using second-order 

polynomials.  Using the Lagrange form for a quadratic fit of three 

points:

⚫ Integration over the three points simplifies to:

( )

( ) ( ) ( )

2

0

0 1 2
0 1 2

 

( ) 4 ( ) ( )
4 ( )

3 6

x

n
x

I f x dx

f x f x f xh
I f x f x f x I b a

=

+ +
 = + + = = − 

 

fn x( )=
x − x1( )
x0 − x1( )

x − x2( )
x0 − x2( )

f x0( )+
x − x0( )
x1 − x0( )

x − x2( )
x1 − x2( )

f x1( )+
x − x0( )
x2 − x0( )

x − x1( )
x2 − x1( )

f x2( )

Where, h = (b – a)/2, a = x0, b = x2, and x1 = (a + b)/2
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⚫ An estimate for the local truncation error of a single application of 

Simpson’s 1/3 rule is:

where again  is somewhere between a and b.

⚫ This formula indicates that the error is dependent upon the fourth-

derivative of the actual function as well as the distance between 

the points.

⚫ Note that the error is dependent on the fifth power of the step size 

(rather than the third for the trapezoidal rule). 

⚫ Error can thus be reduced by breaking the curve into parts.

 

Et = −
1

2880
f

4( ) ( ) b − a( )
5
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⚫ Q. Use Simpson 1/3 rule to integrate the following equation 

from a = 0 to b = 0.8. Exact solution is 1.640533.

2 3 4 5( ) 0.2 2.5 200 675 900 400f x x x x x x= + − + − +

sol) for n = 2 (h = 0.4)에대해서

→ This shows improved results compared to the trapezoidal rule.

232.0)8.0(          456.2)4.0(           2.0)0( === fff

367467.1
6

232.0)456.2(42.0
8.0 =

++
=I

%6.16                   2730667.0367467.1640533.1 ==−= tt εE

2730667.0)2400(
2880

8.0 5

=−−=aE
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⚫ For improved results, Simpson’s 

1/3 rule can be used on a set of 

subintervals in much the same 

way the trapezoidal rule was, 

except there must be an odd 

number of points..

⚫ Because of the heavy weighting of 

the internal points, the formula is a 

little more complicated than for the 

trapezoidal rule:

  

 

I = fn x( )
x0

xn

  dx = fn x( )
x0

x2

  dx + fn x( )
x2

x4

  dx +L + fn x( )
xn−2

xn

  dx

I =
h

3
f x0( )+ 4 f x1( )+ f x2( ) +

h

3
f x2( )+ 4 f x3( )+ f x4( ) +L +

h

3
f xn−2( )+ 4 f xn−1( )+ f xn( ) 

I =
h

3
f x0( )+ 4 f xi( )

i=1
i, odd

n−1

 + 2 f xi( )
j=2
j , even

n−2

 + f xn( )

 

 

 
 
 

 

 

 
 
 

)4(

4

5

180

)(
f

n

ab
Ea

−
−=



School of Mechanical Engineering

Chung-Ang University
Numerical Methods 2010-2

Example 17.4

20

⚫ Q. Use composite Simpson 1/3 rule to integrate the following 

equation from a = 0 to b = 0.8. Exact solution is 1.640533.

2 3 4 5( ) 0.2 2.5 200 675 900 400f x x x x x x= + − + − +

Sol.) for n = 4 (h = 0.2)

          232.0)8.0(

464.3)6.0(              456.2)4.0(

288.1)2.0(                   2.0)0(

=

==

==

f

ff

ff

623467.1
12

232.0)456.2(2)464.3288.1(42.0
8.0 =

++++
=I

%04.1                   017067.0623467.1640533.1 ==−= tt εE

017067.0)2400(
)4(180

8.0
4

5

=−−=aEEstimated error:
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⚫ The composite version of Simpson 1/3 rule is superior to 

the trapezoidal rule for most applications.

⚫ It is limited to cases where the values are equispaced.,

even number of segments, and odd number of points.

⚫ Odd segment and even point formula is known as 

Simpson 3/8 formula.
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Simpson’s 3/8 Rule

⚫ Simpson’s 3/8 rule corresponds to 

using third-order polynomials to fit 

four points. Integration over the 

four points simplifies to:

⚫ Simpson’s 3/8 rule is generally 

used in concert with Simpson’s 1/3 

rule when the number of segments 

is odd.

 

I = fn x( )
x0

x3

  dx

I =
3h

8
f x0( )+ 3 f x1( )+ 3 f x2( )+ f x3( ) 
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⚫ Higher-order Newton-Cotes formulas may also be used 

- in general, the higher order of the polynomial used, the higher 

derivative of the function in the error estimate and the higher the 

power of the step size.

⚫ As in Simpson’s 1/3 and 3/8 rule, the even-segment-odd-point 

formulas have truncation errors that are the same order as 

formulas adding one more point.  For this reason, the even-

segment-odd-point formulas are usually the methods of 

preference.
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⚫ Q. (a) Use Simpson 3/8 to integrate from a = 0 to b = 0.8. 

(b) Use it in conjunction with Simpson 1/3 for five segment 

integration.
2 3 4 5( ) 0.2 2.5 200 675 900 400f x x x x x x= + − + − +

Sol.) (a) For n = 3 (h = 0.2667)

          232.0)8.0(         487177.3)5333.0(

432724.1)2667.0(                            2.0)0(

==

==

ff

ff

51970.1
8

232.0)487177.3432724.1(32.0
8.0 =

+++
=I

(b) For n = 5 (h = 0.16)

232.0)80.0(             181929.3)64.0(

186015.3)48.0(             743393.1)32.0(

296919.1)16.0(                            2.0)0(

==

==

==

ff

ff

ff
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The integral for the first two segments using Simpson 1/3

3803237.0
6

743393.1)296919.1(42.0
32.0 =

++
=I

For the last three segments, the Simpson 3/8

264754.1
8

232.0)181929.3186015.3(3743393.1
48.0 =

+++
=I

The total integral is by summing the two results.

645077.1264754.13803237.0 =+=I
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n
poi

nts
name 공 식 절단오차

1 2
Trapezoidal 

rull

2 3 Simpson 1/3

3 4 Simpson 3/8

4 5 Boole’s rull

5 6

<Newton-Cotes integration: h = (b – a)/n> 

2

)()(
)( 10 xfxf

ab
+

− ( ) )(12/1 3 − fh

6

)()(4)(
)( 210 xfxfxf

ab
++

− ( ) )(90/1 )4(5 − fh

8

)()(3)(3)(
)( 3210 xfxfxfxf

ab
+++

− ( ) )(80/3 )4(5 − fh

90

)(7)(32)(12)(32)(7
)( 43210 xfxfxfxfxf

ab
++++

− ( ) )(945/8 )6(7 − fh

288

)(19)(75)(50)(50)(75)(19
)( 543210 xfxfxfxfxfxf

ab
+++++

− ( ) )(096,12/275 )6(7 − fh
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⚫ Previous formulas were simplified based on 

equispaced data points 

- though this is not always the case.

⚫ The trapezoidal rule may be used with data containing 

unequal segments:

  

 

I = fn x( )
x0

xn

  dx = fn x( )
x0

x1

  dx + fn x( )
x1

x2

  dx +L + fn x( )
xn−1

xn

  dx

I = x1 − x0( )
f x0( )+ f x1( )

2
+ x2 − x1( )

f x1( )+ f x2( )
2

+L + xn − xn−1( )
f xn−1( )+ f xn( )

2
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⚫ MATLAB has built-in functions to evaluate integrals 

based on the trapezoidal rule

⚫ z = trapz(y)

z = trapz(x, y)

produces the integral of y with respect to x. If x is 

omitted, the program assumes h=1.

>> x = [0  .12  .22  .32  .36  .4  .44  .54  .64  .7  .8];

>> y = 0.2 + 25*x - 200*x.^2 + 675*x.^3 - 900*x.^4 + 400*x.^5;

>> trapz(x,y)

ans = 

1.5948



School of Mechanical Engineering

Chung-Ang University
Numerical Methods 2010-2

Multiple Integrals

30

• Multiple integrals can be 

determined numerically by first 

integrating in one dimension, then a 

second, and so on for all dimensions 

of the problem.


