Due: 2017/06/13

1. Evaluate the following integral:

$$\int_{0}^{4} (1 - e^{-2x}) dx$$

(a) Analytically, (b) single application of the trapezoidal rule, (c) composite trapezoidal rule with n=2 and 4, (d) single application of Simpson's 1/3 rule, (e) composite Simpson's 1/3 rule with n=4, (f) Simpson's 3/8 rule. For each of the numerical estimates (b) through (g), determine the true percent relative error based on (a).

16.2 (a) The analytical solution can be evaluated as

$$\int_{0}^{4} (1 - e^{-2x}) dx = \left[x + 0.5e^{-2x} \right]_{0}^{4} = 4 + 0.5e^{-2(4)} - 0 - 0.5e^{-2(0)} = 3.500167731$$

(b) single application of the trapezoidal rule

$$(4-0)\frac{0+0.999665}{2} = 1.99329$$
 ($\varepsilon_t = 42.88\%$)

(c) composite trapezoidal rule

$$(4-0)\frac{0+2(0.981684)+0.999665}{4} = 2.96303 \quad (\varepsilon_t = 15.35\%)$$

n = 2:

$$(4-0)\frac{0+2(0.86466+0.981684+0.99752)+0.999665}{8} = 3.3437 \quad (\varepsilon_t = 4.47\%)$$

(d) single application of Simpson's 1/3 rule

$$(4-0)\frac{0+4(0.981684)+0.999665}{6} = 3.28427 \quad (\varepsilon_t = 6.17\%)$$

(e) composite Simpson's 1/3 rule (n = 4)

$$(4-0)\frac{0+4(0.86466+0.99752)+2(0.981684)+0.999665}{12} = 3.47059 \quad (\varepsilon_t = 0.84\%)$$

(f) Simpson's 3/8 rule.

$$(4-0)\frac{0+3(0.930517+0.995172)+0.999665}{8} = 3.388365 \quad (\varepsilon_t = 3.19\%)$$

2. Solve the following problem over the interval from t=0 to 1 using a step size of 0.25 where y(0) = 1. Display all your results on the same graph.

$$\frac{dy}{dt} = (1+2t)\sqrt{y}$$

(a) Analytically.(b) Using Euler's method.(c) Using Heun's method without iteration.(d) Using the fourth-order RK method. (optional)

18.2 (a) The analytical solution can be derived by the separation of variables,

$$\int \frac{dy}{\sqrt{y}} = \int 1 + 2x \, dx$$

The integrals can be evaluated to give,

$$2\sqrt{y} = x + x^2 + C$$

Substituting the initial conditions yields C = 2. Substituting this value and rearranging gives

$$y = \left(\frac{x^2 + x + 2}{2}\right)^2$$

Some selected value can be computed as

x	У					
0	1					
0.25	1.336914					
0.5	1.890625					
0.75	2.743164					

(b) Euler's method:

1 4

y(0.25) = y(0) + f(0,1)h $f(0,1) = (1+2(0))\sqrt{1} = 1$ y(0.25) = 1 + 1(0.25) = 1.25 y(0.5) = y(0.25) + f(0.25,1.25)0.25 $f(0.25,1.25) = (1+2(0.25))\sqrt{1.25} = 1.67705$ y(0.5) = 1.25 + 1.67705(0.25) = 1.66926

The remaining steps can be implemented and summarized as

x	у	dy/dx
0	1	1
0.25	1.25	1.67705
0.5	1.66926	2.584
0.75	2.31526	3.804
1	3.26626	5.42184

(c) Heun's method:

Predictor:

Predictor:

$$k_1 = (1 + 2(0))\sqrt{1} = 1$$

 $y(0.25) = 1 + 1(0.25) = 1.25$
 $k_2 = (1 + 2(0.25))\sqrt{1.25} = 1.6771$
Corrector:

$$y(0.25) = 1 + \frac{1 + 1.6771}{2} \quad 0.25 = 1.33463$$

The remaining steps can be implemented and summarized as

X	у	<i>k</i> 1	X _e	У _е	<i>k</i> 2	dy/dx
0	1	1.0000	0.25	1.25	1.6771	1.3385
0.25	1.33463	1.7329	0.5	1.76785	2.6592	2.1961
0.5	1.88364	2.7449	0.75	2.56987	4.0077	3.3763
0.75	2.72772	4.1290	1	3.75996	5.8172	4.9731
1	3.97099					

(e) RK4

x	У	<i>k</i> 1	Xm	Уm	<i>k</i> ₂	Xm	Уm	<i>k</i> 3	Xe	Уe	<i>k</i> 4	ϕ
0	1.0000	1	0.125	1.1250	1.32583	0.125	1.1657	1.34961	0.25	1.3374	1.73469	1.3476
0.25	1.3369	1.73436	0.375	1.5537	2.18133	0.375	1.6096	2.2202	0.5	1.8919	2.75096	2.2147
0.5	1.8906	2.74997	0.625	2.2343	3.36322	0.625	2.3110	3.42043	0.75	2.7457	4.14253	3.4100
0.75	2.7431	4.14056	0.875	3.2606	4.96574	0.875	3.3638	5.04368	1	4.0040	6.00299	5.0271
1	3.9998											

